首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Glacier foreland moraines provide an ideal model to examine the patterns of ecosystem development and the evolution of nitrogen and phosphorous limitation over successional time. In this paper, we focus on a 400‐year soil chronosequence in the glacier forelands of Santa Inés Island in the Magellan Strait, southern Chile by examining forest development on phosphorus (P)‐poor substrates in a uniquely unpolluted region of the world. Results show a steady increase in tree basal area and a humped trend in tree species richness over four centuries of stand development. The increase in basal area suggests that the late successional tree species were more efficient nutrient users than earlier successional ones. Total contents of carbon (C) and nitrogen (N) in soils increased during the chronosequence, reaching an asymptote in late succession. The net increases in soil C : N, C : P and N : P ratios observed over successional time suggest that nutrient limitation is maximal in 400‐year‐old substrates. Foliar C : N and C : P ratios also increased over time to reach an asymptote in old‐growth stages, following soil stoichiometric relationships; however the foliar N‐to‐P ratio remained constant throughout the chronosequence. Biological N fixation was greater in early postglacial succession, associated with the presence of the symbiotic N‐fixer Gunnera magellanica. Declining trends of δ15N in surface soils through the 400‐year chronosequence are evidence of decreasing N losses in old‐growth forests. In synthesis, glacier foreland chronosequences at this high South American latitude provide evidence for increasing efficiency of N and P use in the ecosystem, with the replacement of shade‐intolerant pioneers by more efficient, shade‐tolerant tree species. This pattern of ecosystem development produces a constant foliar N : P ratio, regardless of variation in soil N‐to‐P ratio over four centuries.  相似文献   

2.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

3.

Background and aims

Natural abundance of the stable nitrogen (N) isotope 15N can elucidate shifts in plant N acquisition and ecosystem N cycling following disturbance events. This study examined the potential relationship between foliar δ15N and depth of plant N acquisition (surface organic vs. mineral soil) and nitrification as conifer stands develop following stand-replacing wildfire.

Methods

We measured foliar δ15N along an 18-site chronosequence of jack pine (Pinus banksiana) stands, 1 to 72 years in age post-wildfire. Foliar δ15N was compared to total δ15N of the organic (Oe + Oa) and mineral (0–15 cm) soil horizons, and organic horizon N mineralization and nitrification as functions of total mineralization.

Results

Foliar δ15N declined with stand age, yet wildfire effects were heterogeneous. Jack pine seedlings on burned, mineral soil patches in the youngest stand were significantly more enriched than those on unburned, organic patches (P?=?0.007). High foliar values in the youngest stands relative to mineral-horizon δ15N indicate that nitrification also likely contributed to seedling enrichment.

Conclusions

Our results suggest jack pine seedlings on burned patches obtain N from the mineral soil with potentially high nitrification rates, whereas seedlings on unburned patches and increasingly N-limited, mature jack pine acquire relatively more N from organic horizons.  相似文献   

4.
Nitrogen Limits an Invasive Perennial Shrub in Forest Understory   总被引:4,自引:0,他引:4  
Plant invasions can harm communities by domination of one or more vegetation layers. We studied whether Japanese barberry (Berberis thunbergii DC.) is limited by soil acidity or nitrogen availability in its domination of relatively undisturbed forest understories. In two sites, one more acid than the other, we applied lime, urea, or a sawdust–sugar mix to replicate plots in established barberry populations. We predicted that the acid site would be pH or cation limited, while the less acid site was N limited, unless N availability was inherently higher before treatment. Barberry above-ground net primary production (NPP) was estimated by a combination of harvest and allometric analysis. Foliar N increased in the urea treatment and was proportional to incubation estimates of net N mineralization and nitrification. Foliar Ca and P were unaffected by the treatments. Foliar K was proportional to foliar N. The more acid site had higher foliar Mn, but otherwise the sites differed little. Barberry NPP was proportional to pre-treatment biomass. The ratio of net production to pre-treatment woody biomass (relative production rate) increased with foliar N and soil N availability and decreased when soil N was immobilized by sawdust and sugar. There was no effect of soil pH or cation status on barberry growth, although a correlation with foliar K was reflected by the maintenance of a constant K : N ratio. Although more severely acid sites may be less invasible than those studied here, N availability is the primary limitation to invasive dominance in this landscape. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Adair EC  Binkley D  Andersen DC 《Oecologia》2004,139(1):108-116
Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m–2 year–1 for years 10–70, and 2.7 g N m–2year–1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.  相似文献   

6.
Abstract Grazing by domestic livestock is frequently associated with the replacement of high‐nutrient palatable species with low‐nutrient unpalatable species, which may have a substantial effect on nutrient cycling. The objective of the present study was to compare soil N availability and net N mineralization in soils under Poa ligularis (palatable grass) with those in soils under Stipa tenuissima (unpalatable grass) in a temperate semi‐arid rangeland of central Argentina. Nitrogen availability and net mineralization under laboratory and field conditions were measured. Soil N availability under P. ligularis was higher than or similar to soil N availability under S. tenuissima. In situ net N mineralization in the soil under P. ligularis was lower than or similar to net N mineralization in the soil under S. tenuissima. Potential net N mineralization was greater in the soil under P. ligularis than in the soil under S. tenuissima. Our results suggest that the replacement of palatable grasses by unpalatable grasses in the temperate semi‐arid rangelands of central Argentina may imply a reduction in the rate of nutrient cycling.  相似文献   

7.
Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient, we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on Triassic sandstone. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and (2) a reduced accumulation of organic matter on the forest floor, and (3) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter were reduced as well. Net N mineralization and P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. Estimated N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, the decreasing foliar N/P ratios towards the dry stands indicate that the importance of P limitation for tree growth declines with decreasing precipitation.  相似文献   

8.

The Walker and Syers model predict that phosphorus (P) availability decreases with time leading to a final stage known as retrogression. We tested the validity of the Walker and Syers model in the Canary Islands, a soil chronosequence ranging from 300 years to 11 million years under recurrent episodes of atmospheric dust-containing P inputs. In particular, we compared our results with those from the volcanic soil chronosequences described in the Hawaii Islands and in Arizona, as they share key biological and/or geological characteristics. In three islands of the Canarian Archipelago, we selected 18 independent sites dominated by mature Pinus canariensis forests and grouped them into six age classes. For each site, soil samples were analyzed for known proxies of soil nitrogen (N), P and cations availability. We also analyzed the P. canariensis needles for N, P and cation contents. We found tendencies similar to those observed in other soil chronosequences: maximum N and P concentrations at intermediate ages and lower P concentrations in the older soils. The nutrient dynamics suggested that the older sites may indeed be approaching the retrogression stage but at lower rates than in other similar chronosequences. Differences from other chronosequences are likely due to the drier Canarian climate, the higher P deposition rates originating from the nearby Sahara Desert and the top soil horizon studied. Our results confirm the validity of the Walker and Syers model for the Canary Islands despite the influence that the high P deposition rates and the seasonally dry climate may have on soil development and P pools in P. canariensis ecosystems.

  相似文献   

9.
Patterns in the natural abundance of nitrogen (N) isotopes (1?N and 1?N) can help in the understanding of ecosystem processes along environmental gradients, because some processes fractionate against the heavier isotope. We measured δ1?N in many components of the Franz Josef soil chronosequence in New Zealand to see how each component varied along the sequence and within sites, and to see what this variation can tell us about how ecosystem processes such as N losses change with soil age. We analyzed δ1?N in foliage from 18 woody species, abscised leaves from seven woody species, three soil horizons, bryophytes, lichens, bulk deposition, and nodules from the N-fixing tree Coriaria arborea (Coriariaceae). Foliar δ1?N varied significantly across plant species. Foliage and bulk litter became 1?N-depleted as soil age increased. Soil N from organic and mineral horizons was significantly more 1?N-enriched than bulk litter N at each site. Increasing precipitation also decreased foliar and soil δ1?N. Comparing input and whole ecosystem δ1?N revealed limited evidence for net fractionation during N losses. These trends are consistent with some combination of increasing fractionation during plant N uptake, mycorrhizal transfer, within-plant processing, and soil decomposition as soils age.  相似文献   

10.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

11.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

12.
Seasonal net nitrogen (N) and phosphorus (P) mineralization was investigated at Abisko, Swedish Lapland in soils of a subarctic heath and in soils of a colder (by about 4° C), high altitude fellfield by (a) using in situ soil incubation in soils which had been shaded or subjected to two levels of increased temperature, combined with (b) reciprocal transplantation of soils between the two sites. Proportionally large and significant net seasonal mineralization of N, in contrast to non-significant P mineralization, was found in untransplanted and transplanted fellfield soil. In contrast, P was mineralized in proportionally large amounts, in contrast to low N mineralization, in the transplanted and untransplanted heath soil. The differences indicate that P was strongly immobilized in relation to N at the fellfield and that N was more strongly immobilized than P in the heath soil. The immobilization in both soils remained high even after a temperature change of 4–5° C experienced by transplanted soils. Air temperature increases of up to 4–5° C in greenhouses resulted in a soil temperature increase of 1–2° C and did not cause any extra increase of net N and P mineralization. The results suggest that soil temperature increases of up to 2° C, which are likely to occur by the end of the next century as an effect of a predicted 4–5° C rise in air temperature, have only small effects on net mineralization in at least two characteristic tundra soils. These effects are probably smaller than the natural fluctuation of plant available nutrients from site to site, even within the same plant community. A further soil temperature increase of up to 4–5° C may enhance decomposition and gross mineralization, but the rate of net mineralization, and hence the change of nutrient availability to the plants, depends on the extent of microbial immobilization of the extra nutrients released.  相似文献   

13.
Total, organic and extractable P were measured in the humus and underlying soil to 10 cm depth beneath Sitka spruce (SS) and mixed Sitka spruce and Scots pine (SS+SP) stands planted on upland heath. The humus beneath SS+SP contained significantly (p<0.01) greater amounts of total and organic-P than that in SS and the mixed stands had more effectively retained approximately 87 per cent of previously applied fertilizer-P, totalling 100 kg P ha–1, compared with 70 per cent in SS. Despite the larger amounts of total-P in the mixed plots 0.01 M CaCl2 extractable molybdate reactive phosphorus (MRP) was significantly (p<0.05) greater in SS+SP humus only during March and April. Greater concentrations of MRP were released from the humus and soil during July and August at a mean rate of 58 g P ha–1 day–1. This coincided with drying of the soil during the summer and the rate of release, attributed to death of fine roots and microorganisms, was 4 to 30 times greater than reported values for rates of net mineralization of P from forest soils.  相似文献   

14.
Aim Interpretations of global‐scale patterns in foliar N and P concentrations and N:P ratios across climatic gradients and biomes often ignore complications imposed by taxonomic and phylogenetic structure in the nutrient concentrations of the constituent taxa. We analysed foliar N and P concentrations and N:P ratios of species from similar climate zones, but with contrasting soil fertility, to determine the relative importance of phylogeny and geographic region in driving foliar nutrient concentrations. Location Mediterranean climate regions. Methods Mean foliar N and P concentrations of 564 species from five mediterranean climate regions were compiled. Regional comparisons of foliar N and P concentrations and N:P ratios were performed using a phylogenetically independent contrasts (PIC) procedure. We also evaluated phylogenetic structuring in these variables, determining for each clade whether (1) the mean trait value and (2) the variance in trait values deviate significantly from chance expectation. Results Foliar N and P concentrations were found to vary between regions, a result confirmed using PIC. Tests of phylogenetic structure identified lineages having unusually high or low N and P concentrations, these being largely consistent amongst two of the regions. There was a general pattern of conservatism in foliar N and P concentrations and N:P ratios with localized instances of overdispersion. Main conclusions Our findings identify soil fertility as a strong environmental filter which has led to the dominance of low‐nutrient adapted lineages in the South African Cape and Western Australia. There is also a pronounced clade‐specific ‘stoichiometric homeostasis’ in foliar N and P concentrations and N:P ratios and this strong phylogenetic conservatism, together with the narrow range of foliar concentrations, is an evolutionary outcome of factors associated with developmental and physiological nutrient requirements specific to each lineage. Our results reinforce the need to include phylogenetic considerations in discussions of the biological stoichiometry of plants if we are to expand our current knowledge of foliar N and P concentrations and N:P patterns from an ecological to a biogeographic scale.  相似文献   

15.
The well-known deceleration of nitrogen (N) cycling in the soil resulting from addition of large amounts of foliar condensed tannins may require increased fine-root growth in order to meet plant demands for N. We examined correlations between fine-root production, plant genetics, and leaf secondary compounds in Populus angustifolia, P. fremontii, and their hybrids. We measured fine-root (<2mm) production and leaf chemistry along an experimental genetic gradient where leaf litter tannin concentrations are genetically based and exert strong control on net N mineralization in the soil. Fine-root production was highly correlated with leaf tannins and individual tree genetic composition based upon genetic marker estimates, suggesting potential genetic control of compensatory root growth in response to accumulation of foliar secondary compounds in soils. We suggest, based on previous studies in our system and the current study, that genes for tannin production could link foliar chemistry and root growth, which may provide a powerful setting for external feedbacks between above- and belowground processes.  相似文献   

16.
An earlier study suggested that soils on the windward slope of Mount Haleakala are excessively waterlogged at low altitudes but become better drained upslope. We analyzed altitudinal changes in soil N turn over, vegetation mass, and foliar chemical composition of the dominant canopy species, Metrosideros polymorpha (Myrtaceae), on this slope. The basal areas and DBH2× height (an index for volume) of woody species ≥2 m in height increased with altitude (as opposed to a general trend elsewhere), peaked at 1800 m elev., and abruptly declined above this altitude. Foliar N and P concentrations of Metrosideros showed a similar altitudinal trend with DBH2× height values. Foliar Fe and Al concentrations steadily increased downslope, but were low again at 450 m, the lowest altitude, contrary to expectation based on waterlogging. Toxic forms of Fe and Al may retard root penetration in waterlogged soils and thus the uptake of these elements. The net N mineralization rate for topsoils incubated in situ was 78.6 μg/g/20d at 1800 m elev., while small amounts of N were immobilized at 450, 1200 and 2200 m elev. The net N mineralization rates of the topsoils, which were air-dried to their permanent wilting points and incubated at 26°C, were greater than those of the wet samples at 26°C, only for the lowest altitude. Conversely, the net N mineralization rates of the topsoils which were kept wet and incubated at the higher temperature of 26°C were greater (P < 0.1) than those of the in situ wet samples only for 1800 m elev. The rates were the same for 450 and 2200 m elev. where the soils were waterlogged and very dry, respectively; thus, N turn over was more strongly limited by moisture than by temperature in these cases. Nutrient availability improved with altitude up to 1800 m elev. in association with the moisture gradient, and appeared to be responsible for the observed pattern in vegetation mass.  相似文献   

17.
Ecosystem retrogression following long‐term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2‐million‐year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60‐fold decline in total soil P concentration, with the oldest stage representing some of the most severely P‐impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P‐rich soils, greatest on relatively old (~120 000 years) low‐P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability.  相似文献   

18.
At two sites at the extreme ends of a soil development chronosequence in Hawaii, we investigated whether forest responses to fertilization on young soils were similar to those on highly weathered soils and whether the initial responses were maintained after 6–11 years of fertilization. Aboveground net primary production (ANPP) was increased by nitrogen (N) application at the 300-year-old site and phosphorus (P) application at the 4.1-million-year-old site, thus confirming earlier results and their designations as N- and P-limited forests. Along with ANPP, application of the limiting element consistently increased leaf area index (LAI), radiation conversion efficiency (RCE), and foliar and litter nutrient concentrations. Fertilization did not consistently alter N or P retranslocation from senescent leaves at either site, but a comparison with other sites on the chronosequence and with a common-garden study suggests that there is a genetic basis for low foliar and litter nutrients and higher retranslocation at infertile sites vs more fertile sites. N limitation appears to be expressed as limitation to carbon gain, with long leaf lifespans and high leaf mass per area. P limitation results in high P-use efficiency and disproportionally large increases in P uptake after fertilization; a comparison with other studies indicates large investments in acquiring and storing P. Although the general responses of ANPP, LAI, and RCE were similar for the two sites, other aspects of nutrient use differ in relation to the physiological and biogeochemical roles of the two elements. Received 2 June 2000; Accepted 4 April 2001.  相似文献   

19.
Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.  相似文献   

20.
Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (δ44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号