首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N V Hud 《Biophysical journal》1995,69(4):1355-1362
Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.  相似文献   

2.
Experiments are reported which bear on two spool models proposed for packaging the DNA of phage lambda. Both spool models fill an assumed spherical cavity with DNA wrapped in cylindrical or quasi-cylindrical layers composed of adjacent circular turns. In the curved-spool model, a single continuous segment of DNA, about 20% of the DNA length and probably located near the left end of the DNA, is in contact with the coat protein of the phage capsid. In the straight spool model, there are several DNA segments in contact with the capsid; they are concentrated in one half (probably the left half) of lambda DNA. We have identified the loci on the DNA which are in contact with the capsid by chemical crosslinking, induced by ultraviolet-irradiation of phage containing 5-bromodeoxyuridine in place of thymine.In an electron microscope experiment, phage are first lysed with EDTA, and then spread in a cytochrome c film by the formamide method. The disrupted capsid, which has the appearance of a phage ghost, serves as a marker showing where the DNA is crosslinked to the coat. The left end of the DNA is not distinguished from the right end, and so the map of DNA-capsid contacts is folded over on itself. Contacts are found nearly randomly over the entire map.In a second experiment, DNA from lysed, crosslinked phage is cut either with EcoRI or HindIII restriction endonucleases and the cut restriction fragments are labeled at their ends with 32P. Density centrifugation in a CsCl gradient separates free DNA from restriction fragments crosslinked to protein. After digestion with proteinase k, the DNA fragments previously crosslinked to protein are identified by size after agarose gel electrophoresis. DNA fragments from all parts of the genome are found.These two experiments show that, if the DNA of each phage is packaged identically, then the curved-spool model is ruled out and the straight spool model is unlikely. Alternatively, the manner of packaging the DNA may vary from one phage to the next. These results agree with other recent experiments on λ DNA packaging by Hall & Schellman (1982a,b), and by Haas et al. (1982).A different experiment is also reported. The psoralen derivative aminomethyltrioxalen (AMT) is allowed to intercalate into λ phage and then the DNA strands are crosslinked by ultraviolet-irradiation after the rapid phase of AMT intercalation is complete. The DNA is subsequently denatured by glyoxal modification and spread for electron microscopy in a cytochrome c film by the formamide method. Sites of AMT crosslinking appear duplex; uncrosslinked regions appear as single-stranded loops. AMT is found to intercalate throughout the λ DNA. Patterns of reacted sites appear different from one DNA molecule to the next, and no consistent pattern can be found. More extensive intercalation occurs with the deletion mutant λb221 than with phage of wild-type DNA length, and free DNA shows much more reaction than the DNA inside either phage type. In order for intercalation to occur, the DNA helix must unwind and become further extended. This experiment shows that regions throughout the entire DNA molecule can unwind and be extended by intercalation, which is not confined to a single DNA segment or to segments in one half of the DNA molecule, as would be expected for the two spool models if only the DNA in contact with the capsid were accessible to the dye.  相似文献   

3.
Samarendra Basu 《Biopolymers》1977,16(10):2299-2314
The degree of preferred orientation and the coiling of the deoxyribonucleic acid within phage T4 was studied by two independent techniques, namely, polarization of fluorescence and uv linear dichroism. A correlation between the two kinds of data was obtained, which indicated that a significant proportion (about 30%) of total phage DNA is aligned preferentially along the long axis of phage heads. Analyses of the data suggest that all of the phage DNA cannot be in a highly supercoiled helical configuration. A few models of the DNA arrangement in T4 have been discussed in which linear sidewise packings of DNA would be predominant and may explain the observed longitudinal orientation of intraphage DNA.  相似文献   

4.
Identification of messenger RNA for human type II collagen   总被引:4,自引:0,他引:4  
The fluorescence polarization of acridine orange-stained, oriented lambda phages was measured. The parameters of DNA packing within the phage head cos2 theta and cos4 theta were calculated (theta, angle between the direction of a small segment of DNA and the phage axis). It is shown that simple models of lambda phage DNA tertiary structure are not consistent with calculated values. A new model is proposed.  相似文献   

5.
P Hoet  G Fraselle    C Cocito 《Journal of virology》1976,17(3):718-726
The Bacillus subtilis phage 2C contains one molecule of double-stranded DNA of about 100 x 10(6) daltons in which thymine is replaced by hydroxymethyluracil; the two strands have different buoyant densities. Parental DNA, labeled with either [3H]uracil of [32P]phosphate, was quite effectively transferred to offspring phage, and the efficiency of transfer was the same for the two strands. Labeled nucleotide compositions of the H and L strands from parental and progeny virions were very close. These data exclude a degradation of the infecting DNA and reutilization of nucleotides. Upon infection of light unlabeled cells with heavy radioactive viruses, no DNA with either heavy or hybrid density was extracted from offspring phage. Instead, an heterogeneous population of DNA molecules of densities ranging from that of almost hybrid to that of fully light species was obtained. Shear degradation of such progeny DNA to fragments of decreasing molecular weight produced a progressive shift to the density of hybrid molecules. Denaturation of sheared DNA segments caused the appearance of labeled and heavy single-stranded segments. These findings indicate that 2C DNA replicates semiconservatively and then undergoes extensive genetic recombination with newly formed viral DNA molecules within the vegatative pool, thus mimicking a dispersive transfer of the infecting viral genome. The pieces of transferred parental DNA have an average size of 10 x 10(6) daltons.  相似文献   

6.
On the internal structure of bacteriophage lambda   总被引:8,自引:0,他引:8       下载免费PDF全文
The structure of bacteriophage lambda has been studied by electron microscopy of negatively stained particles. The phage particles will eject their DNA if they are heated or dialyzed against a chelating agent. The ghost particles, so formed, have a channel running down their tails. Since the channel is not visible in normal particles, the channel may be filled with part of the DNA molecule. Up to 30% of the ghosts contain round objects about half the internal diameter of the head. The round objects, called "cores," have the same buoyant density as the coat protein. The core may be a protein spool about which the phage DNA is wound.  相似文献   

7.
The presence of certain local structural elements in superhelical DNA, such as cruciforms and denatured loops, complicates the topological and geometric analysis of these molecules. In particular, the duplex axis is often difficult to define. In consequence, the usual conservation condition, Lk = Tw + Wr, is often inapplicable as formulated in terms of the winding of either strand of the DNA about the duplex axis. We present here a more general formulation of the topological conservation condition in terms of a model in which the two strands of DNA are regarded as twisting about one another, and in which one of the two strands is considered to writhe. We define a ladder-like correspondence surface, which connects the two strands nd is independent of whether or not a unique duplex axis is locally available. These considerations lead to the definition of a new topological property of superhelical DNA, the intersection number, In. This quantity describes the complexity of a local structural element; in the case of a cruciform, for example, the intersection number is a measure of the number of duplex turns removed from the major segment of the DNA by the cruciform formation. In more general terms, the topological constraint applicable to closed circular DNA is given by Lk(W,C) + In(S,C) = Tw(W,C) + Wr (C), where W and C represent the two strands of the DNA and S is the ladder-like correspondence surface that connects the two strands.  相似文献   

8.
Gapped duplex DNA molecules of recombinant genomes of filamentous phage are constructed in vitro. Denatured restriction fragments covering (part of) the precisely constructed gap are hybridized to the gapped duplex DNA molecules to form ternary duplices. The two strands of the ternary duplex molecules carry different genetic markers within the region spanned by the restriction fragment leading to a one base pair mismatch or to an insertion loop of 93 nucleotides, respectively. The two strands also vary with respect to A-methylation in GATC sites. In cases of asymmetrical methylation, transfection of E. coli with these heteroduplex molecules leads to marker recoveries with a pronounced bias in favour of the marker encoded by the methylated strand. This effect at least partly explains the comparably low marker yields achieved in previous directed mutagenesis experiments using filamentous phage as the vector. The results suggest how these procedures can be optimized. Precise construction of a 93 bp insertion of 9.5% marker yield is described.  相似文献   

9.
M13 phage is a long, thin nucleoprotein filament containing a single-stranded DNA loop. Exposing the filaments to a chloroform/water interface at 20 °C causes them to contract into hollow spherical particles (spheroids), while exposure at low temperatures yields short, thick rods (I-forms). All of the DNA remains within the I-forms while a specific third remains within the spheroids. Here, a photo-crosslinking reagent, psoralen, has been used to probe secondary structure of the DNA in situ in these chloroform-relaxed phage forms. Following photo-crosslinking, the DNA that had been held within the spheroids appeared to be a duplex rod when seen by electron microscopy, while the DNA extruded from the spheroids was an open single-stranded DNA loop. Photo-crosslinking of the DNA in the I-forms yielded linear duplex DNA rods close to the length of M13 phage filaments. Similar observations derived from experiments with deletion and insertion mutant phage showed that the stability of the duplex rods did not depend on the sequence homology between the two opposing strands. These results showthat two non-homologous strands of DNA can exist in an apparently duplex structure and suggest that this is directed by proteins, possibly involving interaction at a membrane.  相似文献   

10.
Several aspects of the terminal stages of T4 head maturation were investigated using ts and am mutants blocked at single steps of the assembly pathway. We had previously found that cells infected with mutants of gene 13, e.g., tsN38 and amE609, accumulated both stable (10 to 20%)- and fragile (80%)-filled head precursors (Hamilton and Luftig, 1972). Here we showed the following for such gene 13-defective, mutant-infected cells. (i) Using thin-section analysis the pool of phage precursor structures observed under nonpermissive conditions was one-third of that observed when the cells were cultured under permissive conditions. (ii) In order for complete conversion of the precursors into viable phage to occur, there were apparent requirements of metabolic energy, protein, and DNA synthesis. (iii) The intracellular DNA pool under nonpermissive conditions exhibited a 50% distribution between 63S (mature size) and 200 S (concatenate size) DNA, with the latter DNA serving as a precursor pool. Further, this DNA pool when spread onto a protein monolayer exhibited a dispersed array of DNA, strands around a core, which was less dense than that found for the greater than 1,000S DNA concatenate isolated from gene 49-defective infected cells. (iv) When precuations were taken to stabilize the head precursors, such as lysis of the cells into glutaraldehyde, there was a 30% increase in the yield of 1,200S filled heads. Correlating these results and previous results concerning gene 49-defective unfilled heads, we propose that there are several forms of gene 13 fragile head precursors which serve as intermediates between gene 49 unfilled heads and gene 13 stable filled heads. We cannot, however, rule out the possibility that all gene 13-defective heads represent a single class of unstable particles, which decay slowly. In either case, we have shown that gene 13-defective particles are unstable to some degree inside the cell and are highly unstable outside the cell; yet all particles can still be efficiently converted to phage in vivo.  相似文献   

11.
Observation that DNA molecules in bacteriophage capsids preferentially form torus type of knots provided a sensitive gauge to evaluate various models of DNA arrangement in phage heads. Only models resulting in a preponderance of torus knots could be considered as close to reality. Recent studies revealed that experimentally observed enrichment of torus knots can be qualitatively reproduced in numerical simulations that include a potential inducing nematic arrangement of tightly packed DNA molecules within phage capsids. Here, we investigate what aspects of the nematic arrangement are crucial for inducing formation of torus knots. Our results indicate that the effective stiffening of DNA by the nematic arrangement not only promotes knotting in general but is also the decisive factor in promoting formation of DNA torus knots in phage capsids.  相似文献   

12.
Cummings et al. (1973) reported that whenl-canavanine was chased from a T-even. bacteriophage-infected culture with its analog,l-arginine, a new type of aberrant particle was formed. These particles, which were termed “lollipops”, had giant heads as long as 44 normal head lengths, and were filled with DNA. We have now separated these particles into different size classes ranging from about three to 13 normal head lengths and measured the molecular weight of their DNA. The DNA released from intact phage particles by neutral or alkaline detergent lysis was characterized using a recently described biophysical technique which determines DNA molecular weight from solution viscoelasticity. The maximum DNA size correlated roughly with phage head length, indicating that these giant heads were often filled with single, long DNA molecules rather than with several normal-sized molecules. Many of the heads, however, must have contained several molecules, since a large amount of DNA of less than maximum size was present. In alkali the native molecules separated into single strands of approximately the same length as that of the native molecules.  相似文献   

13.
The number of strand-specific nicking endonucleases that are currently available for laboratory procedures and applications in vivo is limited, and none is sufficiently specific to nick single target sites within complex genomes. The extreme target specificity of homing endonucleases makes them attractive candidates for engineering high-specificity nicking endonucleases. I-SceI is a monomeric homing enzyme that recognizes an 18 bp asymmetric target sequence, and cleaves both DNA strands to leave 3′-overhangs of 4 bp. In single turnover experiments using plasmid substrates, I-SceI generates transient open circle intermediates during the conversion of supercoiled to linear DNA, indicating that the enzyme cleaves the two DNA strands sequentially. A novel hairpin substrate was used to demonstrate that although wild-type I-SceI cleaves either the top or bottom DNA strand first to generate two nicked DNA intermediates, the enzyme has a preference for cleaving the bottom strand. The kinetics data are consistent with a parallel sequential reaction mechanism. Substitution of two pseudo-symmetric residues, Lys122 and Lys223, markedly reduces top and bottom-strand cleavage, respectively, to generate enzymes with significant strand- and sequence-specific nicking activity. The two active sites are partially interdependent, since alterations to one site affect the second. The kinetics analysis is consistent with X-ray crystal structures of I-SceI/DNA complexes that reveal a role for the lysines in establishing important solvent networks that include nucleophilic water molecules thought to attack the scissile phosphodiester bonds.  相似文献   

14.
Immediate and delayed inactivation of ethylmethane sulfonate (EMS)-treated lambda phage were studied. Phage particles with one alkylated and one intact deoxyribonucleic acid (DNA) strand were obtained by allowing host-modified, EMS-treated phage to undergo one growth cycle in a nonmodifying host and selecting the progeny with semiconserved parental DNA on a restricting host. The results indicate that particles with one alkylated DNA strand are more sensitive to a second treatment with the alkylating agent. When incubated at 37 C, they are subject to inactivation at a rate which is smaller than that of phages containing two alkylated DNA strands. It appears that depurination events in one of the DNA strands of a phage particle are sufficient to cause death.  相似文献   

15.
We have produced three dimensional reconstructions, at a nominal resolution of 5 nm, of thick filaments from scorpion and Limulus skeletal muscle, both of which have a right-handed four-stranded helical arrangement of projecting subunits. In both reconstructions there was a distinct division of density within projecting subunits consistent with the presence of two myosin heads. Individual myosin heads appeared to be curved, with approximate dimensions of 16 X 5 X 5 nm and seemed more massive at one end. Our reconstructions were consistent with the two heads in a projecting subunit being arranged either antiparallel or parallel to each other and directed away from the bare zone. Although we cannot exclude the second of these interpretations, we favor the first as being more consistent with both filament models and also because it would enable easy phosphorylation of light chains. The antiparallel interpretation requires that the two heads within a subunit derive from different myosin molecules. In either interpretation, the two heads have different orientations relative to the thick filament shaft.  相似文献   

16.
Heterozygous replicative form molecules of bacteriophage X174 deoxyribonucleic acid (DNA) have been constructed in vitro. These are composed of viral strands extracted from purified preparations of phage bearing ts mutations and complementary strands of either half length or full length synthesized with purified DNA polymerase, in vitro, on DNA from am3 phage. In infections with such heterozygous DNA, involving mutations in each of four different cistrons, phage with the genotype of the complementary strand comprised 1 to 20% of the total phage produced by a spheroplast population. From single-burst analysis of the progeny from DNA heterozygous in one cistron (B), it appears that those phage with the genotype of the complementary strand arise as major components in a small proportion of the infected cells rather than comprising a minor component in most cells. The implications of such a pattern of expression are discussed with respect to mechanisms of phage DNA synthesis.  相似文献   

17.
W M Stark  D J Sherratt  M R Boocock 《Cell》1989,58(4):779-790
Site-specific recombination catalyzed by Tn3 resolvase proceeds with a linkage change, delta Lk, of +4 in the forward resolution reaction and -4 in the catenane fusion reverse reaction. The reverse reaction occurs only at low superhelical densities and gives unknotted circular products, consistent with plectonemic and not solenoidal wrapping of the two recombination sites. The strand exchange topologies are consistent with a mechanism in which resolvase cleaves all four DNA strands and religates them after a 180 degrees rotation of two duplex partners in a right-handed sense for the "forward" reaction, and in a left-handed sense for the "reverse" action. This could be achieved by a 180 degrees rotation of two resolvase subunits within a tetramer with D2 symmetry; we suggest that a different symmetry applies to phage lamda integrase catalysis.  相似文献   

18.
Three basic proteins of low molecular weight (about 8000, 10,000 and 18,000) were isolated from the T4D phage particle. Many molecules of each protein are located within the phage head, possibly in association with the DNA, and together with the proteins which form the head membrane comprise most of the head structural protein. The purified internal proteins were characterized by physicochemical and immunological techniques; a radio-immunoassay allowed measurement of their synthesis in phage infected bacteria. Each internal protein is synthesized at both early and late times after infection. Their structural genes are present in the phage genome, but do not appear to be among the known amber mutant-containing genes of T4D. No evidence was found to suggest that the internal proteins are formed from a common precursor molecule, nor are their origins related to those of the internal peptides; however, one of the internal proteins may be altered before its incorporation into the phage. Pulse-chase experiments with two of these proteins show that they are incorporated into certain defective T4D heads. Whether or not they are incorporated appears to depend on the degree of completion of these heads, perhaps with respect to DNA packaging.  相似文献   

19.
Evidence was presented to support the hypothesis that long single strands appearing at late times (15 min after infection) are produced as a result of recombination and not as a continuous elongation during the replication process. The production of long strands does not depend on the multiplicity of infection, and the first long strands appear at the time when 20 to 50 phage equivalent units of deoxyribonucleic (DNA) are synthesized, and not earlier. The addition of chloramphenicol at 5 min, which prevents molecular recombination but allows replication of DNA, prevents the formation of long, single strands. Chloramphenicol added between 8 and 10 min after infection, a time at which molecular recombination is fully expressed and covalent repair of recombinant molecules is allowed, does not prevent formation of long single strands. Cutting of single-strand DNA with a limited amount of endonuclease I allows confirmation that the fast-sedimenting characteristic of intracellular denatured DNA is caused primarily by the length of the strands, and not by the formation of aggregates. The computer simulation of two recombination models indicates the feasibility of random breakage and rejoining of molecules in generating long concatenates.  相似文献   

20.
Large-scale conformational transitions are involved in the life-cycle of many types of virus. The dsDNA phages, herpesviruses, and adenoviruses must undergo a maturation transition in the course of DNA packaging to convert a scaffolding-containing precursor capsid to the DNA-containing mature virion. This conformational transition converts the procapsid, which is smaller, rounder, and displays a distinctive skewing of the hexameric capsomeres, to the mature virion, which is larger and more angular, with regular hexons. We have used electron cryomicroscopy and image reconstruction to obtain 15 A structures of both bacteriophage P22 procapsids and mature phage. The maturation transition from the procapsid to the phage results in several changes in both the conformations of the individual coat protein subunits and the interactions between neighboring subunits. The most extensive conformational transformation among these is the outward movement of the trimer clusters present at all strict and local 3-fold axes on the procapsid inner surface. As the trimer tips are the sites of scaffolding binding, this helps to explain the role of scaffolding protein in regulating assembly and maturation. We also observe DNA within the capsid packed in a manner consistent with the spool model. These structures allow us to suggest how the binding interactions of scaffolding and DNA with the coat shell may act to control the packaging of the DNA into the expanding procapsids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号