首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipid channels as described for protein channels. Non-linear and asymmetric current–voltage relationships are seen in both systems. Without further knowledge of the recording conditions, no easy decision can be made whether short current traces originate from a channel protein or from a pure lipid membrane.  相似文献   

2.
It is generally accepted that inositol-1,4,5-trisphosphate (InsP3) plays a role in olfactory transduction. However, the precise mode of action of InsP3 remains controversial. We have characterized the conductances activated by the addition of 10 microM InsP3 to excised patches of soma plasma membrane from rat olfactory neurons. InsP3 induced current fluctuations in 25 of 121 inside-out patches. These conductances could be classified into two groups according to the polarity of the current at a holding potential of +40 to +60 mV (with Ringer's in the pipette and pseudointracellular solution in the bath). Conductances mediating outward currents could be further divided into large- (64 +/- 4 pS, n = 4) and small- (16 +/- 1.7 pS, n = 11) conductance channels. Both small- and large-conductance channels were nonspecific cation channels. The large-conductance channel displayed bursting behavior at +40 mV, with flickering increasing at negative holding potentials to the point where single-channel currents were no longer discernible. The small-conductance channel did not display flickering behavior. The conductance mediating inward currents at +40 to +60 mV reversed at +73 +/- 4 mV (n = 4). The current traces displayed considerable fluctuations, and single-channel currents could not be discerned. The current fluctuations returned to baseline after removal of InsP3. The power density spectrum for the excess noise generated by InsP3 followed a 1/f dependence consistent with conductance fluctuations in the channel mediating this current, although other mechanisms are not excluded. These experiments demonstrate the presence of plasma membrane InsP3-gated channels of different ionic specificity in olfactory receptor cells.  相似文献   

3.
The Cl(-) channels of brown adipocytes electrophysiologically resemble outwardly rectifying Cl(-) channels (ORCC). To study tentative Ca(2+) regulation of these channels, we attempted to control Ca(2+) levels at the cytoplasmic side of the inside-out membrane patches with Ca(2+)-chelating agents. However, we found that the commonly used Ca(2+)-chelators EGTA and BAPTA by themselves influenced the Cl(-) channel currents, unrelated to their calcium chelating effects. Consequently, in this report we delineate effects of Ca(2+)-chelators (acting from the cytoplasmic side) on the single Cl(-) channel currents in patch-clamp experiments. Using fixed (1-2 mM) concentrations of chelators, two types of Cl(-) channels were identified, as discriminated by their reaction to the Ca(2+)-chelators and by their conductance: true-blockage channels (31 pS) and quasi-blockage channels (52 pS). In true-blockage channels, EGTA and BAPTA inhibited channel activity in a classical flickery type manner. In quasi-blockage channels, chelators significantly shortened the duration of individual openings, as in a flickering block, but the overall channel activity tended to increase. This dual effect of mean open time decrease accompanied by a tendency of open probability to increase we termed a quasi-blockage. Despite the complications due to the chelators as such, we could detect a moderate inhibitory effect of Ca(2+). The anionic classical Cl(-) channel blockers DIDS and SITS could mimic the true/quasi blockage of EGTA and BAPTA. It was concluded that at least in this experimental system, standard techniques for Ca(2+) level control in themselves could fundamentally affect the behaviour of Cl(-) channels.  相似文献   

4.
We have recently shown that a maxi-K+ channel from vas deferens epithelial cells contains two Ba2+-binding sites accessible from the external side: a "flickering" site located deep in the channel pore and a "slow" site located close to the extracellular mouth of the channel. Using the patch-clamp technique, we have now studied the effect of internal Ba2+ on this channel. Cytoplasmic Ba2+ produced a voltage- and concentration-dependent "slow" type of block with a dissociation constant of approximately 100 microM. However, based on its voltage dependence and sensitivity to K+ concentration, this block was clearly different from the external "slow" Ba2+ block previously described. Kinetic analysis also revealed a novel "fast flickering" block restricted to channel bursts, with an unblocking rate of approximately 310 s(-1), some 10-fold faster than the external "flickering" block. Taken together, these results show that this channel contains multiple Ba2+-binding sites within the conduction pore. We have incorporated this information into a new model of Ba2+ block, a novel feature of which is that internal "slow" block results from the binding of at least two Ba2+ ions. Our results suggest that current models for Ba2+ block of maxi-K+ channels need to be revised.  相似文献   

5.
The patch-clamp technique was used to characterize channels that could contribute to the resting Cl-conductance in the surface membrane of cultured rat skeletal muscle. Two Cl- -selective channels, in addition to the Cl- -selective channel of large conductance described previously (Blatz and Magleby, 1983), were observed. One of these channels had fast kinetics and a conductance of 45 +/- 1.8 pS (SE) in symmetrical 100 mM KCl. The other had slow kinetics and a conductance of 61 +/- 2.4 pS. The channel with fast kinetics typically closed within 1 ms after opening and flickered between the open and shut states. The channel with slow kinetics typically closed within 10 ms after opening and displayed less flickering. Both channels were active in excised patches of membrane held at potentials similar to resting membrane potentials in intact cells, and both were open a greater percentage of time with depolarization. Under conditions of high ion concentrations, both channels exhibited nonideal selectivity for Cl- over K+ with the permeability ratio PK/PCl of 0.15-0.2. Additional experiments on the fast Cl- channel indicated that its activity decreased with lowered pHi and that SO2-4 and CH3SO-4 were ineffective charge carriers. These findings, plus the observation that the fast Cl- channel was also active in membrane patches on intact cells, suggest that the fast Cl- channel provides a molecular basis for at least some of the resting Cl- conductance. The extent to which the slow Cl- channel contributes is less clear as it was typically active only after excised patches of membrane had been exposed to high concentrations of KCl at the inner membrane surface.  相似文献   

6.
Cloning of a stretch-inhibitable nonselective cation channel   总被引:5,自引:0,他引:5  
A homologue of the capsaicin receptor-nonselective cation channel was cloned from the rat kidney to investigate a mechanosensitive channel. We found this channel to be inactivated by membrane stretch and have designated it stretch-inactivated channel (SIC). SIC encodes a 563-amino acid protein with putative six transmembrane segments. The cDNA was expressed in mammalian cells, and electophysiological studies were performed. SIC-induced large cation currents were found to be regulated by cell volume, with currents being stimulated by cell shrinkage and inhibited by cell swelling. Single channel analysis showed a conductance of 250 pS with cation permeability (PCl/PNa < 0.1), and the channel possessed some of the characteristics of a stretch-inactivated channel in that it was permeable to calcium, sensitive to membrane stretch, and blocked by Gd3+. Therefore, we cloned one of the mechanosensitive cation channels of mammals, which is considered to regulate Ca2+ influx in response to mechanical stress on the cell membrane.  相似文献   

7.
Large conductance Ca2+-activated K+ (BK) channels are responsible for changes in chemical and physical signals such as Ca2+, Mg2+ and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca2+ signal allosterically regulate the channel activity via the linker of the gating ring complex. Here we investigate how these two gating principles interact with each other. We found that stretch force activated SAKCaC in the absence of cytoplasmic Ca2+. Lack of Ca2+ bowl (a calcium binding motif) in SAKCaC diminished the Ca2+-dependent activation, but the mechanosensitivity of channel was intact. We also found that the abrogation of STREX (a proposed mechanosensing apparatus) in SAKCaC abolished the mechanosensitivity without altering the Ca2+ sensitivity of channels. These observations indicate that membrane stretch and intracellular Ca2+ could independently modulate SAKCaC activity.  相似文献   

8.
Using the inside-out patch clamp technique, we identified a Cl? channel in patches from the membrane of cultured human hematopoietic myeloblastic leukemia ML-1 cells. The Cl? channel was not seen at negative membrane potentials in excised patches until the membrane potential was depolarized to greater than +40 mV. The channel was also activated by addition of cAMP-dependent protein kinase (PKA) catalytic subunit at physiological membrane potential (?40 mV). Biophysical studies of the Cl? channel revealed that the current-voltage (I-V) relationship of the Cl? channel was outwardly rectifying in symmetrical 142 mm Cl? solutions. Single channel conductances were 48 pS for the outward current measured at +60 mV and 27 pS for the inward current at ?60 mV. The open time constant of the channel was dependent on the membrane potential and was significantly prolonged at positive membrane potentials. Channels activated by cAMP-dependent protein kinase spent a significantly longer time in the open state compared to those channels activated by depolarization pulses. Pharmacological properties of the Cl? channel were also studied. Two anion transport inhibitors, anthracene-9-carboxylic acid (9-AC) and 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) caused a flickering block of the channel. Half-inhibitory concentrations (IC50) for 9-AC and DIDS were 174 ± 20 and 70±16 μm, respectively. Blockade of the Cl? channel by 9-AC or DIDS was completely reversible. Our findings suggest that outwardly rectifying Cl? channels (ORCC) are present in human hematopoietic myeloblasts. The function of ORCC may be involved in hormone-regulated cell growth, cell volume regulation and immune responses.  相似文献   

9.
Ion channels are pivotal to many aspects of sperm physiology and function. We have used the patch clamp technique to investigate the distribution of ion channels in the plasma membrane of the head of human spermatozoa. We report that three types of activity are common in the equatorial and acrosomal regions of the sperm head. Two of these (a chloride-permeable anion channel showing long stable openings and a second channel which flickered between open and closed states and was dependent upon cytoplasmic factors for activity) were localised primarily to the equatorial segment. A third type, closely resembling the flickering activity but with different voltage sensitivity of P(open), was more widely distributed but was not detectable over the anterior acrosome. In the anterior acrosomal area channels were present but showed very low levels of spontaneous activity. A unique feature of channel activity in the sperm equatorial region was co-localisation into mixed clusters, most patches were devoid of activity but 'active' patches typically contained two or more types of activity (in a single 200-300 nM diameter patch). We conclude that ion channels in the sperm membrane show regionalisation of type and activity and that the channels are clustered into functional groups, possibly interacting through local effects on membrane potential.  相似文献   

10.
We consider a model for voltage-dependent gating of channels in which the gating charges are on the channel wall and move only a small distance. When this movement occurs across the closed gate, the charges move through the entire transmembrane potential, which is energetically equivalent to their moving across the entire membrane. The channel exists in two open states, O1 and O2, and two closed states, C1 and C2; each open and closed configuration is divided into two states because of the two possible positions of the gating charges. An unusual property of this model is that the electrical work in going from an open to a closed configuration (for example, in going from O1 to C2) is path dependent, and net work can result from going reversibly around a complete cycle. The model channel, like many biological channels, shows bursting activity. This flickering on and off of the channel enables the gate to sense the electric field and decide if it should be in the open or closed configuration. We prove here some general theorms concerning the electrical work associated with the movements of the walls of channels and the movements of charges on these walls.  相似文献   

11.
Using the patch clamp technique, we have investigated the blockade of maxi-K+ channels present on vas deferens epithelial cells by extracellular Ba2+. With symmetrical 140 mM K+ solutions, Ba2+ produced discrete blocking events consisting of both long closings of seconds duration (slow block) and fast closings of milliseconds duration (flickering block). Kinetic analysis showed that flickering block occurred according to an "open channel blocking" scheme and was eliminated by reducing external K+ to 4.5 mM. Slow block showed a complex voltage-dependence. At potentials between -20 mV and 20 mV, blockade was voltage-dependent; at potentials greater than 20 mV, blockade was voltage-independent, but markedly sensitive to the extracellular K+ concentration. These data reveal that the vas deferens maxi-K+ channel has two Ba2+ binding sites accessible from the extracellular side. Site one is located at the cytoplasmic side of the gating region and binding to this site causes flickering block. Site two is located close to the extracellular mouth of the channel and binding to this site causes slow block.  相似文献   

12.
13.
KAT1 is a cloned plant potassium channel belonging to the superfamily of Shaker-like Kv channels. Previous studies have shown that 14-3-3 proteins significantly increase KAT1 current by modifying the channel open probability. Employing a 14-3-3 scavenger construct to lower the long-term availability of endogenous 14-3-3 proteins, we found that 14-3-3 proteins not only control the voltage dependency of the channel but also the number of channels in the plasma membrane.  相似文献   

14.
The melastatin (M) transient receptor potential channel (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. We recently reported that PKCδ activity influences smooth muscle cell excitability by promoting translocation of TRPM4 channel protein to the plasma membrane. Here we further investigate the relationship between membrane localization of TRPM4 protein and channel activity in native cerebral arterial myocytes. We find that TRPM4 immunolabeling is primarily located at or near the plasma membrane of freshly isolated cerebral artery smooth muscle cells. However, siRNA mediated downregulation of PKCδ or brief (15 min) inhibition of PKCδ activity with rottlerin causes TRPM4 protein to move away from the plasma membrane and into the cytosol. In addition, we find that PKCδ inhibition diminishes TRPM4-dependent currents in smooth muscle cells patch clamped in the amphotericin B perforated patch configuration. We conclude that TRPM4 channels are mobile in native cerebral myocytes and that basal PKCδ activity supports excitability of these cells by maintaining localization TRPM4 protein at the plasma membrane.  相似文献   

15.
16.
17.
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a  6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4.  相似文献   

18.
Peralta EG 《Life sciences》1995,56(11-12):957-964
Neurotransmitter receptors alter membrane excitability and synaptic efficacy by generating intracellular signals that ultimately change the properties of ion channels. Given their critical role in controlling cell membrane potential, potassium channels are frequently the targets of modulatory signals from many different G protein-coupled receptors. However, due to the heterogeneity of potassium channel expression in vivo, it has been difficult to determine the molecular mechanisms governing the regulation of molecularly defined potassium channels. Through expression studies in Xenopus oocytes and mammalian cells, we found that the m1 muscarinic acetylcholine receptor (mAChR) potently suppresses a cloned delayed rectifier potassium channel, termed RAK, through a pathway involving phospholipase C activation and direct tyrosine phosphorylation of the RAK protein. In contrast, we found that RAK channel activity is strongly enhanced following agonist activation of beta2-adrenergic receptors; this effect requires a single PKA consensus phosphorylation site located near the amino terminus of the channel protein. These results demonstrate that a specific type of potassium channel that is widely expressed in the mammalian brain and heart is subject to both positive and negative regulation by G protein-dependent pathways.  相似文献   

19.
Escherichia coli hemolysin is known to cause hemolysis of red blood cells by forming hydrophilic pores in their cell membrane. Hemolysin-induced pores have been directly visualized in model systems such as planar lipid membranes and unilamellar vesicles. However this hemolysin, like all the members of a related family of toxins called Repeat Toxins, is a potent leukotoxin. To investigate whether the formation of channels is involved also in its leukotoxic activity, we used patch-clamped human macrophages as targets. Indeed, when exposed to the hemolysin, these cells developed additional pores into their membrane. Such exogenous pores had properties very different from the endogenous channels already present in the cell membrane (primarily K+ channels), but very similar to the pores formed by the toxin in purely lipidic model membranes. Observed properties were: large single channel conductance, cation over anion selectivity but weak discrimination among different cations, quasilinear current-voltage characteristic and the existence of a flickering pre-open state of small conductance. The selectivity properties of the toxin channels appearing in phospholipid vesicles were also investigated, using a specially adapted polarization/depolarization assay, and were found to be completely consistent with that of the current fluctuations observed in excised macrophage patches. Received: 14 August 1995/Revised: 2 October 1995  相似文献   

20.
We describe the first successful reconstitution of placental ionic channels on planar lipid bilayers. An apical plasma membrane-enriched vesicle fraction from human syncytiotrophoblast at term was prepared by following isotonic agitation, differential centrifugation, and Mg2+-induced selective precipitation of nonapical membranes, and its purity was assessed by biochemical and morphological marker analysis. We have already reported that, unlike previous patch-clamp studies, nonselective cation channels were incorporated in most cases, a result consistent with the higher permeability for cations as compared with Cl and with the low apical membrane potential difference at term revealed by fluorescent probe partition studies, and microelectrode techniques. In this paper, we report that Cl-selective channels were incorporated in 4% of successful reconstitutions (14 out of 353) and that their analysis revealed two types of activity. One of them was consistent with a voltage-dependent, 100-pS channel while the other was consistent with the lateral association of 47-pS conductive units, giving rise to multibarrelled, DIDS-sensitive channels of variable conductance (300 to 650 pS). The latter displayed a very complex behavior which included cooperative gating of conductive units, long-lived substates, voltage-dependent entry into an apparent inactivated state, and flickering activity. The role of the reported Cl channels in transplacental ion transport and/or syncytium homeostasis remains to be determined. Received: 17 September/Revised: 12 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号