首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

3.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

4.
Itoh Y  Takamura A  Ito N  Maru Y  Sato H  Suenaga N  Aoki T  Seiki M 《The EMBO journal》2001,20(17):4782-4793
Activation of proMMP-2 by MT1-MMP is considered to be a critical event in cancer cell invasion. In the activation step, TIMP-2 bound to MT1-MMP on the cell surface acts as a receptor for proMMP-2. Subsequently, adjacent TIMP-2-free MT1-MMP activates the proMMP-2 in the ternary complex. In this study, we demonstrate that MT1-MMP forms a homophilic complex through the hemopexin-like (PEX) domain that acts as a mechanism to keep MT1-MMP molecules close together to facilitate proMMP-2 activation. Deletion of the PEX domain in MT1-MMP, or swapping the domain with the one derived from MT4-MMP, abolished the ability to activate proMMP-2 on the cell surface without affecting the proteolytic activities. In addition, expression of the mutant MT1-MMP lacking the catalytic domain (MT1PEX-F) efficiently inhibited complex formation of the full-length enzymes and activation of pro MMP-2. Furthermore, expression of MT1PEX-F inhibited proMMP-2 activation and Matrigel invasion activity of invasive human fibrosarcoma HT1080 cells. These findings elucidate a new function of the PEX domain: regulating MT1-MMP activity on the cell surface, which accelerates cellular invasiveness in the tissue.  相似文献   

5.
Activation of pro-matrix metalloproteinase (MMP)-2 on the surface of malignant cells by membrane-bound MT1-MMP is believed to play a critical role during tumor progression and metastasis. In this study we present evidence that MT1-MMP plays a key role for the in vitro invasiveness of malignant melanoma. Melanoma cell lines secreted latent MMP-2 when cultured on plastic. However, when cells were grown in floating type I collagen lattices, only high invasive melanoma cells activated proMMP-2. Activation could be inhibited by antibodies against MT1-MMP, by addition of recombinant tissue inhibitor of metalloproteinases (TIMP)-2 and by inhibition of MT1-MMP cleavage. MT1-MMP protein was detected as an inactive protein in all cell lines cultured as monolayers, whereas in collagen gels, active MT1-MMP protein was detected in the membranes of both high and low invasive melanoma cells. Production of TIMP-2 was about 10-fold higher in low invasive cells as compared with high invasive melanoma cells and was further increased in the low invasive cells upon contact to collagen. Thus, in melanoma cells TIMP-2 expression levels might regulate MT1-MMP-mediated activation of proMMP-2. High invasive melanoma cells displayed increased in vitro invasiveness, which was inhibited by TIMP-2. These data indicate the importance of these enzymes for the invasion processes and support a role for MT1-MMP as an activator of proMMP-2 in malignant melanoma.  相似文献   

6.
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for the membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent activation of pro-MMP-2 on the cell surface. MT1-MMP-bound TIMP-2 has been shown to function as a receptor for secreted pro-MMP-2, resulting in the formation of a trimolecular complex. In the presence of uncomplexed active MT1-MMP, the prodomain of cell surface-associated MMP-2 is cleaved, and activated MMP-2 is released. However, the behavior of MT1-MMP-bound TIMP-2 during MMP-2 activation is currently unknown. In this study, (125)I-labeled recombinant TIMP-2 ((125)I-rTIMP-2) was used to investigate the fate of TIMP-2 during pro-MMP-2 activation by HT1080 and transfected A2058 cells. HT1080 and A2058 cells transfected with MT1-MMP cDNA (but not vector-transfected A2058 cells) were able to bind (125)I-rTIMP-2, to activate pro-MMP-2, and to process MT1-MMP into an inactive 43-kDa form. Under these conditions, (125)I-rTIMP-2 bound to the cell surface was rapidly internalized and degraded in intracellular organelles through a bafilomycin A(1)-sensitive mechanism, and (125)I-bearing low molecular mass fragment(s) were released in the culture medium. These different processes were inhibited by hydroxamic acid-based synthetic MMP inhibitors and rTIMP-2, but not by rTIMP-1 or cysteine, serine, or aspartic proteinase inhibitors. These results support the concept that the MT1-MMP-dependent internalization and degradation of TIMP-2 by some tumor cells might be involved in the regulation of pericellular proteolysis.  相似文献   

7.
8.
The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.  相似文献   

9.
Type I collagen stimulation of pro-matrix metalloproteinase (pro-MMP)-2 activation by ovarian cancer cells involves beta(1) integrin receptor clustering; however, the specific cellular and biochemical events that accompany MMP processing are not well characterized. Collagenolysis is not required for stimulation of pro-MMP-2 activation, and denatured collagen does not elicit an MMP-2 activation response. Similarly, DOV13 cells bind to intact collagen utilizing both alpha(2)beta(1) and alpha(3)beta(1) integrins but interact poorly with collagenase-treated or thermally denatured collagen. Antibody-induced clustering of alpha(3)beta(1) strongly promotes activation of pro-MMP-2, whereas alpha(2)beta(1) integrin clustering has only marginal effects. Membrane-type 1 (MT1)-MMP is present on the DOV13 cell surface as both an active 55-kDa TIMP-2-binding species and a stable catalytically inactive 43-kDa form. Integrin clustering stimulates cell surface expression of MT1-MMP and co-localization of the proteinase to aggregated integrin complexes. Furthermore, cell surface proteolysis of the 55-kDa MT1-MMP species occurs in the absence of active MMP-2, suggesting MT1-MMP autolysis. Cellular invasion of type I collagen matrices requires collagenase activity, is blocked by tissue inhibitor of metalloproteinases-2 (TIMP-2) and collagenase-resistant collagen, is unaffected by TIMP-1, and is accompanied by pro-MMP-2 activation. Together, these data indicate that integrin stimulation of MT1-MMP activity is a rate-limiting step for type I collagen invasion and provide a mechanism by which this activity can be down-regulated following collagen clearance.  相似文献   

10.
Migration of cardiac fibroblasts is implicated in infarct healing and ventricular remodeling. Activation of matrix metalloproteinases induced by three-dimensional type I collagen, the principal component of the myocardial interstitium, is hypothesized to be essential for this migration. By utilizing primary cultures of cardiac fibroblasts and collagen lattice models, we demonstrated that type I collagen induced MMP-2 activation, and cells undergoing a change from isometric tension to mechanical unloading were associated with increased levels of total and active MMP-2 species. The collagen-induced MMP-2 activation coincided with up-regulated cellular levels of both membrane type 1-matrix metalloproteinase (MT1-MMP) and TIMP-2. A fraction of cellular membrane prepared from cells embedded in the collagen lattice containing active MT1-MMP and TIMP-2 was capable of activating pro-MMP-2, and exogenous TIMP-2 had a biphasic effect on this membrane-mediated MMP-2 activation. Interestingly, the presence of 43-kDa MT1-MMP species in a fraction of intracellular soluble proteins prepared from monolayer cells but not cells embedded in the lattices indicates that MT1-MMP metabolizes differently under the two different culture conditions. Treatment of cells embedded in the lattice with furin inhibitor attenuated pro-MT1-MMP processing and MMP-2 activation and impeded cell migration and invasion. These results suggest that the migration and invasion of cardiac fibroblasts is furin-dependent and that the active species of MT1-MMP and MMP-2 may be involved in both events.  相似文献   

11.
Binding of tissue inhibitor of metalloproteinase-2 (TIMP-2) to pro-MMP-2 and mature membrane type-1 MMP (MT1-MMP) on the cell surface is required for activation of MMP-2. It has been reported that following binding to cell surface receptors, TIMP-2 undergoes endocytosis and extensive degradation in lysosomes. The purpose of this study was to reexamine the fate of TIMP-2 following binding to transfected HT1080 cell surface MT1-MMP at 4 degrees C. Following 37 degrees C incubation, 125I-TIMP-2 release, endocytosis, and degradation were characterized under varying conditions. More than 85% of the total 125I-TIMP-2 bound to cells was released as intact functional molecules; <15% was degraded. Transfection of HT1080 cells with dominant negative mutant dynamin cDNA resulted in delayed endocytosis and release of 125I-TIMP-2 from cells. Pharmacologic agents that induce clustering of cell surface receptors (concanavalin A) and interfere with endosomal/lysosomal function (bafilomycin A(1)) resulted in enhanced binding of 125I-TIMP-2 to cell surface receptors. Abrogation of activation of proMT1-MMP with a furin inhibitor prevented binding and endocytosis of 125I-TIMP-2. Biotinylation of cell surface MT1-MMP followed by Western blotting confirmed the presence of mature MT1-MMP on the cell surface and degraded MT1-MMP in the intracellular compartment. In conclusion, these studies demonstrate that TIMP-2 is released from cells primarily as an intact functional molecule following binding to MT1-MMP on the cell surface.  相似文献   

12.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

13.
The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.  相似文献   

14.
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.  相似文献   

15.
Expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely correlated with tumor invasiveness. We investigated the effect of hyperthermia on the production of MT1-MMP in human fibrosarcoma HT-1080 cells. Heat shock at 42 degrees C suppressed the production and gene expression of MT1-MMP in HT-1080 cells. Heat shock-induced suppression of MT1-MMP production resulted in the inhibition of progelatinase A (proMMP-2) activation and the increased release of tissue inhibitor of metalloproteinases 2 from cell surface. In addition, in vitro tumor invasion assay in a Matrigel model indicated that heat shock inhibited the invasive activity of HT-1080 cells. These results suggest that heat shock preferentially suppresses the production of MT1-MMP and thereby inhibits proMMP-2 activation, events which subsequently inhibit tumor invasion. Therefore, heat shock shows an anti-invasive effect along with the known mechanism of inhibiting tumor growth.  相似文献   

16.
Matrix metalloproteinases (MMP) play a critical role in tumor invasion and metastasis. The goal of this study was to elucidate peculiarities of expression of gelatinases A and B (MMP-2 and MMP-9), membrane type MMP (MT1-MMP) and tissue inhibitor of MMP (TIMP-2) in immortal (IF) and transformed fibroblasts (TF). The study was carried out using embryo rat fibroblasts, sequentially immortalized with the polyomavirus LT gene and transformed with the E7 gene of human papillomavirus (HPV-16). Papillomaviruses type16 and 18 are the etiological factor for cervical cancer. A primary fibroblast (PF) culture of Fisher rats was used as control. Analysis of TF and IF included determination of MMP-2 and MMP-9 activity by hydrolysis of the specific substrate, radioactive collagen type IV; analysis of MMP spectra by a zymographic assay, and estimation of the mRNA expression by RT-PCR. It was found that: (1) collagenolytic activity of MMP was increased only in TF and it depended on the degree of cell tumorigenicity; (2) the study of MMP spectra revealed the presence of MMP-9 only in TF, whereas MMP-2 was found in IF as well; (3) the mRNA expression of MMP-9, MT1-MMP and TIMP-2 increased in all TF while the MMP-2 expression increased in TF only after TF cell selection on rats; (4) the collagenolytic activity as well as the mRNA expression of MMP-2 and MMP-9 and endogenous regulators (MT1-MMP and TIMP-2) did not change in immortalized fibroblasts compared to the PF culture. The data obtained indicate changes in the ratio enzyme/activator/inhibitor and also suggest a significant increase in the TF destructive potential. MMP-9 is supposed to be a marker of fibroblasts transformed by E7 HPV16 gene in a cell culture.  相似文献   

17.
The mammalian convertase furin plays a significant role in tumorigenesis and its overexpression was observed in a number of different cancer types. To date, however, few mechanisms of action have been described. Most of the information available concerns the invasion step and designates MT1-MMP, through the activation of MMP-2, as the bona fide substrate mediating furin activity. However, recent reports indicate furin-independent pathways for MT1-MMP activation. To gain further insights into the role of furin in the invasion process, we studied the in vitro invasive capacity of LoVo cells, a furin-deficient adenocarcinoma cell line transfected with wild-type furin. Furin complementation resulted in an increased cell invasiveness that correlated with their capacity to produce MMP-2. Chemical blockage of MMPs activity with BB-3103 or MMP-2-specific antibodies revealed that the increased invasive capacity of furin-complemented cells was mediated by MMP-2. Unexpectedly, furin complementation did not change the status of MT1-MMP expression or activation, but instead resulted in the production of mature and bioactive TGFbeta1. Western blot-analysis of TGFbeta1 fragmentation species indicated that TGFbeta maturation step required furin activity, whereas results from TGFbeta-inducible reporter assays in the presence of MMP inhibitors or exogenous MMP-2 suggested that the activation step was under MMP influence. In addition, blockage with TGFbeta neutralizing antibodies revealed that furin-induced invasiveness was mediated by endogenous production of TGFbeta. Taken together, our findings established the existence of a novel alternative/complementary pathway by which furin increases tumor cell invasion through an amplification/activation loop between MMP-2 and TGFbeta.  相似文献   

18.
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.  相似文献   

19.
Curcumin (Cur), a component of turmeric (Curcuma longa), has been reported to exhibit antimetastatic activities, but the mechanisms remain unclear. Other curcuminoids present in turmeric, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) have not been investigated whether they exhibit antimetastatic activity to the same extent as curcumin. The regulation of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) play important role in cancer cell invasion by cleavage of extracellular matrix (ECM). In this line, we comparatively examined the influence of Cur, DMC and BDMC on the expressions of uPA, MMP-2, MMP-9, membrane Type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-2), and in vitro invasiveness of human fibrosarcoma cells. The results indicate that the differential potency for inhibition of cancer cell invasion was BDMC> or =DMC>Cur, whereas the cell migration was not affected. Zymography analysis exhibited that curcumin, DMC and BDMC significantly decreased uPA, active-MMP-2 and MMP-9 but not pro-MMP-2 secretion from the cells in a dose-dependent manner, in which BDMC and DMC show higher potency than curcumin. The suppression of active MMP-2 level correlated with inhibition of MT1-MMP and TIMP-2 protein levels involved in pro-MMP-2 activation. Importantly, BDMC and DMC at 10 microM reduced MT1-MMP and TIMP-2 protein expression, but curcumin slightly reduced only MT1-MMP but not TIMP-2. In addition, three forms of curcuminoids significantly inhibited collagenase, MMP-2, and MMP-9 but not uPA activity. In summary, these data demonstrated that DMC and BDMC show higher antimetastasis potency than curcumin by the differentially down-regulation of ECM degradation enzymes.  相似文献   

20.
Activation of matrix metalloproteinase 2 (MMP-2) has been shown to play a significant role in the behavior of cancer cells, affecting both migration and invasion. The activation process requires multimolecular complex formation involving pro-MMP-2, membrane type 1-MMP (MT1-MMP), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because calcium is an important regulator of keratinocyte function, we evaluated the effect of calcium on MMP regulation in an oral squamous cell carcinoma line (SCC25). Increasing extracellular calcium (0.09-1.2 mm) resulted in a dose-dependent increase in MT1-MMP-dependent pro-MMP-2 activation. Despite the requirement for MT1-MMP in the activation process, no changes in MT1-MMP expression, cell surface localization, or endocytosis were apparent. However, increased generation of the catalytically inactive 43-kDa MT1-MMP autolysis product and decline in the TIMP-2 levels in conditioned media were observed. The decrease in TIMP-2 levels in the conditioned media was prevented by a broad spectrum MMP inhibitor, suggesting that calcium promotes recruitment of TIMP-2 to MT1-MMP on the cell surface. Despite the decline in soluble TIMP-2, no accumulation of TIMP-2 in cell lysates was seen. Blocking TIMP-2 degradation with bafilomycin A1 significantly increased cell-associated TIMP-2 levels in the presence of high calcium. These data suggest that the decline in TIMP-2 is because of increased calcium-mediated MT1-MMP-dependent degradation of TIMP-2. In functional studies, increasing calcium enhanced MMP-dependent cellular migration on laminin-5-rich matrix using an in vitro colony dispersion assay. Taken together, these results suggest that changes in extracellular calcium can regulate post-translational MMP dynamics and thus affect the cellular behavior of oral squamous cell carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号