首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This short review discusses pharmacological modulation of the opening/closing properties (gating) of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2 and KCa3.1) with special focus on mechanisms-of-action, selectivity, binding sites, and therapeutic potentials. Despite KCa channel gating-modulation being a relatively novel field in drug discovery, efforts in this area have already revealed a surprising plethora of pharmacological sites-of-actions and channel subtype selectivity exerted by different chemical classes. The currently published positive modulators show that such molecules are potentially useful for the treatment of various neurodegenerative disorders such as ataxia, alcohol dependence, and epilepsy as well as hypertension. The negative KCa2 modulators are very effective agents for atrial fibrillation. The prediction is that further unraveling of the molecular details of gating pharmacology will allow for the design of even more potent and subtype selective KCa modulators entering into drug development for these indications.  相似文献   

2.
The effects of sulfhydryl reduction/oxidation on the gating of large-conductance, Ca2+-activated K+ (maxi-K) channels were examined in excised patches from tracheal myocytes. Channel activity was modified by sulfhydryl redox agents applied to the cytosolic surface, but not the extracellular surface, of membrane patches. Sulfhydryl reducing agents dithiothreitol, β-mercaptoethanol, and GSH augmented, whereas sulfhydryl oxidizing agents diamide, thimerosal, and 2,2′-dithiodipyridine inhibited, channel activity in a concentration-dependent manner. Channel stimulation by reduction and inhibition by oxidation persisted following washout of the compounds, but the effects of reduction were reversed by subsequent oxidation, and vice versa. The thiol-specific reagents N-ethylmaleimide and (2-aminoethyl)methanethiosulfonate inhibited channel activity and prevented the effect of subsequent sulfhydryl oxidation. Measurements of macroscopic currents in inside-out patches indicate that reduction only shifted the voltage/nPo relationship without an effect on the maximum conductance of the patch, suggesting that the increase in nPo following reduction did not result from recruitment of more functional channels but rather from changes of channel gating. We conclude that redox modulation of cysteine thiol groups, which probably involves thiol/disulfide exchange, alters maxi-K channel gating, and that this modulation likely affects channel activity under physiological conditions.  相似文献   

3.
AIMS: Although 5-hydroxytryptamine (5-HT) contracts airway smooth muscle in many mammalian species, in guinea pig and human airways 5-HT causes a contraction followed by relaxation. This study explored potential mechanisms involved in the relaxation induced by 5-HT. MAIN METHODS: Using organ baths, patch clamp, and intracellular Ca(2+) measurement techniques, the effect of 5-HT on guinea pig airway smooth muscle was studied. KEY FINDINGS: A wide range of 5-HT concentrations caused a biphasic response of tracheal rings. Response to 32 muM 5-HT was notably reduced by either tropisetron or methiothepin, and almost abolished by their combination. Incubation with 10 nM ketanserin significantly prevented the relaxing phase. Likewise, incubation with 100 nM charybdotoxin or 320 nM iberiotoxin and at less extent with 10 muM ouabain caused a significant reduction of the relaxing phase induced by 5-HT. Propranolol, L-NAME and 5-HT(1A), 5-HT(1B)/5-HT(1D) and 5-HT(2B) receptors antagonist did not modify this relaxation. Tracheas from sensitized animals displayed reduced relaxation as compared with controls. In tracheas precontracted with histamine, a concentration response curve to 5-HT (32, 100 and 320 muM) induced relaxation and this effect was abolished by charybdotoxin, iberiotoxin or ketanserin. In single myocytes, 5-HT in the presence of 3 mM 4-AP notably increased the K(+) currents (I(K(Ca))), and they were completely abolished by charybdotoxin, iberiotoxin or ketanserin. SIGNIFICANCE: During the relaxation induced by 5-HT two major mechanisms seem to be involved: stimulation of the Na(+)/K(+)-ATPase pump, and increasing activity of the high-conductance Ca(2+)-activated K(+) channels, probably via 5-HT(2A) receptors.  相似文献   

4.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.  相似文献   

5.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

6.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

7.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

8.
Huang MH  Wu SN  Chen CP  Shen AY 《Life sciences》2002,70(10):1185-1203
Quinones have been shown to possess antineoplastic activity; however, their effects on ionic currents remain unclear. The effects of 2-mercaptophenyl-1,4-naphthoquinone (2-MPNQ), menadione (MD) and 1,4-naphthoquinone (1,4 NQ) on cell proliferation and ionic currents in pituitary GH3 lactotrophs were investigated in this study. 2-MPNQ was more potent than menadione or 1,4-naphthoquinone in inhibiting the growth of GH3 cells. 2-MPNQ decreased cell proliferation in a concentration-dependent manner with an IC50 value of 3 microM. In whole-cell recording experiments, 2-MPNQ reversibly caused an inhibition of Ca2+-activated K+ current (I(K(Ca)) in a concentration-dependent manner. The IC50 value for 2-MPNQ-induced inhibition of I(K(Ca)) was 7 microM. In the inside-out configuration of single channel recording, 2-MPNQ (30 microM) applied intracellularly suppressed the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels but did not modify single channel conductance. Menadione (30 microM) had no effect on the channel activity, whereas 1,4-naphthoquinone (30 microM) suppressed it by about 26%. Both 2-MPNQ and thimerosal suppressed the dithiothreitol-stimulated channel activity. 2-MPNQ also blocked voltage-dependent K+ currents, but it produced a slight reduction of L-type Ca2+ inward current. However, unlike E-4031, 2-MPNQ (30 microM) did not suppress inwardly rectifying K+ current present in GH3 cells. Under the current clamp configuration, the presence of 2-MPNQ (30 microM) depolarized the cells, and increased the frequency and duration of spontaneous action potentials. The 2-MPNQ-mediated inhibition of K+ currents would affect hormone secretion and cell excitability. The blockade of these ionic channels by 2-MPNQ may partly explain its inhibitory effect on the proliferation of GH3 cells.  相似文献   

9.
Contryphan-Vn is a D-tryptophan-containing disulfide-constrained nonapeptide isolated from the venom of Conus ventricosus, the single Mediterranean cone snail species. The structure of the synthetic Contryphan-Vn has been determined by NMR spectroscopy. Unique among Contryphans, Contryphan-Vn displays the peculiar presence of a Lys-Trp dyad, reminiscent of that observed in several voltage-gated K(+) channel blockers. Electrophysiological experiments carried out on dorsal unpaired median neurons isolated from the cockroach (Periplaneta americana) nerve cord on rat fetal chromaffin cells indicate that Contryphan-Vn affects both voltage-gated and Ca(2+)-dependent K(+) channel activities, with composite and diversified effects in invertebrate and vertebrate systems. Voltage-gated and Ca(2+)-dependent K(+) channels represent the first functional target identified for a conopeptide of the Contryphan family. Furthermore, Contryphan-Vn is the first conopeptide known to modulate the activity of Ca(2+)-dependent K(+) channels.  相似文献   

10.
Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders.  相似文献   

11.
Testosterone is a potent inhibitor of L-type Ca(2+) channels   总被引:3,自引:0,他引:3  
Testosterone administration is beneficial in alleviating myocardial ischaemia in men with significant coronary artery disease (CAD), a condition which is associated with hypotestosteronaemia. Infusion of physiological concentrations of testosterone into coronary arteries at angiography results in rapid vasodilatation in patients with CAD. Whilst the cardiovascular benefits of testosterone have long been documented, the underlying mechanism(s) have not yet been revealed. Here, we have investigated whether testosterone might act like widely prescribed antihypertensive dihydropyridines, as an endogenous Ca(2+) channel antagonist. To do this, we used the whole-cell patch-clamp technique to record Ca(2+) currents from the A7r5 smooth muscle cell line and HEK 293 cells stably expressing either L- or T-type Ca(2+) channels. We demonstrate that testosterone directly inhibited both native and human recombinant vascular L-type Ca(2+) channels in a manner that was voltage-independent and, crucially, displayed an IC(50) value of 38 nM, a value within the physiological range. At higher (supraphysiological) concentrations both native and human recombinant T-type channels were also inhibited by testosterone. Our data indicate that testosterone acts like widely prescribed antihypertensive dihydropyridines to reduce Ca(2+) influx into vascular smooth muscle and so promote vasodilation. This effect is likely to account for its beneficial cardiovascular actions.  相似文献   

12.
The effects of the natural polyamines, putrescine, spermidine and spermine on single calcium-activated potassium channels from clonal rat pituitary tumor cells (GH3) were studied. Applied to inside-out patches, polyamines were found to reduce the current amplitude and open probability of the channels in a dose- and voltage-dependent manner, indicating that polyamines act as fast blockers which sense a fraction of the electrical field in the channel pore. The K d for spermine was 11.2 mm for the reduction of unitary current amplitude and 0.7 mm for the reduction of the open probability. The order of effectiveness was spermine > spermidine > putrescine. From fitting -functions to current amplitude histograms, blocking and unblocking rates were determined as 11.4 × 104 sec–1 and 21.9 × 104 sec–1, respectively. The reduction of the channel open probability was relieved by an increase of the Ca2+ concentration of the internal solution, indicating that polyamines compete with Ca2+ at the Ca2+ sensor of the channel. Putrescine antagonized the effect of spermine on the channel current amplitude. The results suggest that polyamines at intracellular millimolar concentrations suppress ion channel activity and therefore may effect electrical discharge behavior of excitable cells.This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, P8587.  相似文献   

13.
Miguel A. Aon  An-Chi Wei  Brian O'Rourke 《BBA》2010,1797(1):71-33677
Mitochondrial volume regulation depends on K+ movement across the inner membrane and a mitochondrial Ca2+-dependent K+ channel (mitoKCa) reportedly contributes to mitochondrial K+ uniporter activity. Here we utilize a novel KCa channel activator, NS11021, to examine the role of mitoKCa in regulating mitochondrial function by measuring K+ flux, membrane potential (ΔΨm), light scattering, and respiration in guinea pig heart mitochondria. K+ uptake and the influence of anions were assessed in mitochondria loaded with the K+ sensor PBFI by adding either the chloride (KCl), acetate (KAc), or phosphate (KH2PO4) salts of K+ to energized mitochondria in a sucrose-based medium. K+ fluxes saturated at ∼ 10 mM for each salt, attaining maximal rates of 172 ± 17, 54 ± 2.4, and 33 ± 3.8 nmol K+/min/mg in KCl, KAc, or KH2PO4, respectively. NS11021 (50 nM) increased the maximal K+ uptake rate by 2.5-fold in the presence of KH2PO4 or KAc and increased mitochondrial volume, with little effect on ΔΨm. In KCl, NS11021 increased K+ uptake by only 30% and did not increase volume. The effects of NS11021 on K+ uptake were inhibited by the KCa toxins charybdotoxin (200 nM) or paxilline (1 μM). Fifty nanomolar of NS11021 increased the mitochondrial respiratory control ratio (RCR) in KH2PO4, but not in KCl; however, above 1 μM, NS11021 decreased RCR and depolarized ΔΨm. A control compound lacking KCa activator properties did not increase K+ uptake or volume but had similar nonspecific (toxin-insensitive) effects at high concentrations. The results indicate that activating K+ flux through mitoKCa mediates a beneficial effect on energetics that depends on mitochondrial swelling with maintained ΔΨm.  相似文献   

14.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

15.
L-type Ca(v)1.3 channels control the autonomous pacemaking of the substantia nigra (SN) dopamine (DA) neurons, which maintains the sustained release of DA in the striatum, its target structure. The persistent engagement of L-type channels during pacemaking might lead to increased vulnerability to environmental stressors or degenerative processes, providing a mechanism for the development of Parkinson's disease (PD). Interestingly, L-type channels are not necessary for pacemaking, opening the possible use of calcium channel antagonists as neuroprotective agents for PD without disturbing normal DA function. In this study we aimed to evaluate the consequences of Ca(v)1.3 channels deletion at the neurochemical level. For this purpose, tissue concentrations of DA and their respective metabolites were measured using high performance liquid chromatography (HPLC) in the striatum and the nucleus accumbens (NAcc) of mice lacking the gene for the Ca(v)1.3 channel subunit (CACNA1D) and compared to those in wild-type mice. Striatal DA level did not differ between the two groups. In contrast, the level of serotonin, glutamate, GABA, and taurine were increased by more than 50% in the striatum of Ca(v)1.3 null mice. Neurotransmitters levels in the NAcc did not differ between the different groups. In conclusion, our results neurochemically corroborate the robustness of the nigrostriatal DA neurons in the absence of Ca(v)1.3 channels, but suggest that complete deletion of this channel affected a variety of other transmitter systems.  相似文献   

16.
Summary Ciliary motility was examined optically in tissue cultures from frog palate epithelium and frog's esophagus as a function of extracellular concentration of adenosine 5-triphosphate (ATP) and related compounds. The addition of micromolar concentration of ATP caused a strong enhancement of frequency and wave velocity in the direction of the effective stroke. Since adenosine 5-[, imido]-triphosphate (AMP-PNP), a nonhydrolyzable analog of ATP, produces the same effects, ATP hydrolysis is not required. The overall potency is ATP AMP-PNP>ADP adenosine>AMP. It is suggested that both the phosphate and the base moieties are involved in ATP binding.The enhancement of ciliary activity by extracellular ATP is dependent on the presence of extracellular Ca2+, which can be replaced by extracellular Mg2+. The effect of a number of potent inhibitors of the voltage-gated calcium channels on the stimulation of ciliary activity by ATP were examined. No effect was detected in the concentration range within which these agents are specific. On the other hand, quinidine, a potent inhibitor of K+ (calcium-dependent) channels, inhibits the effect of ATP.The following model is suggested: exogenous ATP interacts with a membrane receptor in the presence of Ca2+, a cascade of events occurs which mobilizes intracellular calcium, thereby increasing the cytosolic free Ca2+ concentration which consequently opens the calcium-activated K+ channels, which then leads to a change in membrane potential. The ciliary response to these changes is the enhancement of ciliary activity.This work was supported by a grant from the Fund for Basic Research administered by the Israel Academy of Science and Humanities.  相似文献   

17.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K(+) channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca(2+) -activated K(+) channels (BK(Ca)). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K(+) currents carried by BK(Ca) channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC(50) 324 μM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 μM) can also block whole-cell K(+) currents (~45% blockage) in which, under our working conditions, BK(Ca) is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BK(Ca) channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

18.
A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.2 mM (glucose stimulation) increased the levels of [Ca2+]i of beta-cells, and clonidine reversibly reduced the elevated levels of [Ca2+]i. This clonidine effect was antagonized by yohimbine, and abolished in beta-cells pre-treated with PTX. Clonidine showed little effect on membrane currents including those through ATP-sensitive K+ channels induced by voltage ramps from -90 to -50 mV. Clonidine showed little effect on the magnitude of whole-cell currents through L-type Ca2+ channels (ICa(L)), but increased the inactivation process of the currents. Clonidine increased the magnitude of the voltage-dependent K+ currents (IVK). These clonidine effects on ICa(L) and IVK were abolished in beta-cells treated with PTX or GDP-betaS. These results suggest that the PTX-sensitive pathway increases IVK activity and decreases ICa(L) activity of islet beta-cells, resulting in a decrease in the levels of [Ca2+]i elevated by depolarization-induced Ca2+ entry. This mechanism seems responsible at least in part for well-known inhibitory action of PTX-sensitive pathway on glucose-stimulated insulin secretion from islet beta-cells.  相似文献   

19.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

20.
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号