首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of N-ethylmaleimide (MalNEt), or of fluoro dinitrobenzene to a suspension of Escherichia coli during the phosphorylating uptake of methyl-alpha-D-glucopyranoside (Me-Glc), a glucose analog, stops uptake and phosphorylation and causes the loss of previously accumulated sugar and of its phosphate ester. After removal of the reagents, the phosphotransferase system remains irreversibly inactive. Pretreatment of the bacteria with the same reagents under the same conditions of concentration, pH, temperature and for the same length of time causes very little inactivation. Mercuric chloride, a reversible inactivator, prevents the phosphotransferase system from reacting simultaneously with MaINEt or with fluorodinitrobenzene. This protection strongly suggests that all three reagents react with the same site, presumably an -SH group. The change which makes this site available to the reagents depends on the phosphorylative uptake of Me-Glc. Preload of the cells and efflux of Me-Glc do not achieve the same change. The rate of inactivation is directly proportional to the rate of phosphorylative uptake. When the Km of phosphorylative uptake is modified by an uncoupling agent, the substrate concentration allowing half maximal rate of inactivation by MaINEt changes accordingly. The reactive sites of the phosphotransferase system can also be made accessible to the -SH group reagents by fluoride inhibition of phosphoenolpyruvate synthesis. This suggests that the inactivator resistent form is an "energized form" of the enzyme. The unmasking of the reactive site is not due to a change in transmembrane penetration of the reagents since incubation of toluene treated cells with MaINEt in the presence of phosphoenolpyruvate fails to inactivate the phosphotransferase activity, while incubation with MaINEt plus Me-Glc causes fast inactivation.  相似文献   

2.
The membrane-bound component of the phosphotransferase system of Escherichia coli, responsible for the phosphorylative uptake of methyl-alpha-D-glucoside has an essential thiol group which becomes available to inactivation by thiol reagents in the presence of the phosphate-accepting sugar or when phosphoenolpyruvate synthesis is inhibited. The form resistant to the thiol reagent requires not only the absence of sugar and an intact phosphoenolpyruvate generating system, but also an intact system generating phosphorylated Hpr which is impaired by heating of a thermosensitive enzyme I mutant.  相似文献   

3.
The membrane-bound component of the phosphotransferase system of Escherichia coli, responsible for the phosphorylative uptake of methyl-α-d-glucoside has an essential thiol group which becomes available to inactivation by thiol reagents in the presents of the phosphate-accepting sugar or when phosphoenolpyruvate synthesis is inhibited. The form resistant to the thiol reagent requires not only the absence of sugar and an intact phosphoenol-pyruvate generating system, but also an intact system generating phosphorylated Hpr which is impaired by heating of a thermosensitive enzyme I mutant.  相似文献   

4.
The addition of N-ethylmaleimide (MalNEt), or of fluoro dinitrobenzene to a suspension of Escherichia coli during the phosphorylating uptake of methyl-α-d-glucopyranoside (Me-Glc), a glucose analog, stops uptake and phosphorylation and causes the loss of previously accumulated sugar and of its phosphate ester. After removal of the reagents, the phosphotransferase system remains irreversibly inactive.Pretreatment of the bacteria with the same reagents under the same conditions of concentration, pH, temperature and for the same length of time causes very little inactivation. Mercuric chloride, a reversible inactivator, prevents the phosphotransferase system from reacting simultaneously with MalNEt or with fluorodinitrobenzene. This protection strongly suggests that all three reagents react with the same site, presumably an -SH group.The change which makes this site available to the reagents depends on the phosphorylative uptake of Me-Glc. Preload of the cells and efflux of Me-Glc do not achieve the same change.The rate of inactivation is directly proportional to the rate of phosphorylative uptake. When the Km of phosphorylative uptake is modified by an uncoupling agent, the substrate concentration allowing half maximal rate of inactivation by MalNEt changes accordingly.The reactive sites of the phosphotransferase system can also be made accessible to the -SH group reagents by fluoride inhibition of phosphoenolpyruvate synthesis. This suggests that the inactivator resistent form is an “energized form” of the enzyme.The unmasking of the reactive site is not due to a change in transmembrane penetration of the reagents since incubation of toluene treated cells with MalNEt in the presence of phosphoenolpyruvate fails to inactivate the phosphotransferase activity, while incubation with MalNEt plus Me-Glc causes fast inactivation.  相似文献   

5.
Four phosphoenolpyruvate (PEP) derivatives, carrying reactive or activable chemical functions in each of the three chemical regions of PEP, were assayed as alternative substrates of enzyme I (EI) of the Escherichia coli PEP:glucose phosphotransferase system. The Z- and E-isomers of 3-chlorophosphoenolpyruvate (3-Cl-PEP) were substrates, presenting K(m) values of 0.08 and 0.12 mm, respectively, very similar to the K(m) of 0.14 mm measured for PEP, and k(cat) of 40 and 4 min(-1), compared with 2,200 min(-1), for PEP. The low catalytic efficiency of these substrates permits the study of activity at in vivo EI concentrations. Z-Cl-PEP was a competitive inhibitor of PEP with a K(I) of 0.4 mm. E-Cl-PEP was not an inhibitor. Compounds 3 and 4, obtained by modification of the carboxylic and phosphate groups of PEP, were neither substrates nor inhibitors of EI, highlighting the importance of these functionalities for recognition by EI. Z-Cl-PEP is a suicide inhibitor. About 10-50 turnovers sufficed to inactivate EI completely. Such a property can be exploited to reveal and quantitate phosphoryl transfer from EI to other proteins at in vivo concentrations. Inactivation was saturatable in Z-Cl-PEP, with an apparent K(m)(inact) of 0.2-0.4 mm. The rate of inactivation increased with the concentration of EI, indicating a preferential or exclusive reaction with the dimeric form of EI. E-Cl-PEP inactivates EI much more slowly, and unlike PEP, it did not protect against inactivation by Z-Cl-PEP. This and the ineffectiveness of E-Cl-PEP as a competitive inhibitor have been related to the presence of two EI active species. Cys-502 of EI was identified by mass spectrometry as the reacting residue. The C502A EI mutant showed less than 0.06% wild-type activity. Sequence alignments and comparisons of x-ray structures of different PEP-utilizing enzymes indicate that Cys-502 might serve as a proton donor during catalysis.  相似文献   

6.
Plasmid-encoded His-tagged glucose permease of Escherichia coli, the enzyme IIBCGlc (IIGlc), exists in two physical forms, a membrane-integrated oligomeric form and a soluble monomeric form, which separate from each other on a gel filtration column (peaks 1 and 2, respectively). Western blot analyses using anti-His tag monoclonal antibodies revealed that although IIGlc from the two fractions migrated similarly in sodium dodecyl sulfate gels, the two fractions migrated differently on native gels both before and after Triton X-100 treatment. Peak 1 IIGlc migrated much more slowly than peak 2 IIGlc. Both preparations exhibited both phosphoenolpyruvate-dependent sugar phosphorylation activity and sugar phosphate-dependent sugar transphosphorylation activity. The kinetics of the transphosphorylation reaction catalyzed by the two IIGlc fractions were different: peak 1 activity was subject to substrate inhibition, while peak 2 activity was not. Moreover, the pH optima for the phosphoenolpyruvate-dependent activities differed for the two fractions. The results provide direct evidence that the two forms of IIGlc differ with respect to their physical states and their catalytic activities. These general conclusions appear to be applicable to the His-tagged mannose permease of E. coli. Thus, both phosphoenolpyruvate-dependent phosphotransferase system enzymes exist in soluble and membrane-integrated forms that exhibit dissimilar physical and kinetic properties.  相似文献   

7.
Sulfhydryl reagents affected the binding properties of the translocator domain, NIII, of enzyme IImtl in two ways: (i) the affinity for mannitol was reduced, and (ii) the exchange rate of bound and free mannitol was increased. The effect on the affinity was very much reduced after solubilization of enzyme IImtl in the detergent decylPEG. The effects were caused exclusively by reaction of the sulfhydryl reagents with the cysteine residue at position 384 in the primary sequence. Interaction between two domains is involved, since Cys384 is located in the cytoplasmic domain, CII. When Cys384 was mutated to serine, the enzyme exhibited the same binding properties as the chemically modified enzyme. The data support our proposal that phosphorylation of enzyme IImtl drastically reduces the activation energy for the translocation step through interaction between domains CII and NIII [Lolkema J. S., ten Hoeve-Duurkens, R. H., Swaving Dijkstra, D., & Robillard, G. T. (1991) Biochemistry (preceding paper in this issue)]. Functional interaction between the translocator domain, NIII, and domain CI was investigated by phosphorylation of His554, located in domain CI, in the C384S mutant. No effect on the binding properties was observed. In addition, the binding properties were insensitive to the presence of the soluble phosphotransferase components enzyme I and HPr.  相似文献   

8.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

9.
The membrane-bound Enzyme IIbgl and IIglc are both inactivated in vivo by the sulfhydryl reagent N-ethylmaleimide. The former is also inhibited by the hydrophilic sulfhydryl reagents p-chloromercuribenzoic acid and p-mercuriphenylsulfonic acid, while the latter is resistant to these reagents. However, inhibition of this enzyme is observed after impairment, either transient or permanent, of the permeability barrier of bacterial envelopes. Since p-chloromercuribenzoic acid and p-chloromercuriphenylsulfonic acid are able to cross the outer membrane of Escherichia coli, their failure to inhibit in vivo Enzyme IIglc must be due to their inability to cross the inner membrane of the bacteria. It would therefore appear that sensitive thiol group(s) of Enzyme IIglc and Enzyme IIbgl, in spite of their functional similarity, exhibit opposite orientation within the cytoplasmic membrane, the first enzyme having an -SH group accessible from the outer surface of the membrane, while the second has an -SH group accessible from the inner surface of the membrane. The present results strengthen the view that these two enzymes have in asymmetric orientation within the membrane as already suggested by their vectorial function.  相似文献   

10.
Purified mannitol-specific enzyme II (EIImtl), in the presence of the detergent Lubrol, catalyzes the phosphorylation of mannitol from P-HPr via a classical ping-pong mechanism involving the participation of a phosphorylated EIImtl intermediate. This intermediate has been demonstrated by using radioactive phosphoenolpyruvate. Upon addition of mannitol, at least 80% of the enzyme-bound phosphoryl groups can be converted to mannitol 1-phosphate. The EIImtl concentration dependence of the exchange reaction indicates that self-association is a prerequisite for catalytic activity. The self-association can be achieved by increasing the EIImtl concentration or at low concentrations of EIImtl by adding HPr or bovine serum albumin. The equilibrium is shifted toward the dissociated form by mannitol 1-phosphate, resulting in a mannitol 1-phosphate induced inhibition. Mannitol does not affect the association state of the enzyme. Both mannitol and mannitol 1-phosphate also act as classical substrate inhibitors. The apparent Ki of each compound, however, is approximately equal to its apparent Km, suggesting that mannitol and mannitol 1-phosphate bind at the same site on EIImtl. Due to strong inhibition provided by mannitol and mannitol 1-phosphate in the exchange reaction, the kinetics of this reaction cannot be used to determine whether the reaction proceeds via a ping-pong or an ordered reaction mechanism.  相似文献   

11.
The orientation of the mannitol binding site on the Escherichia coli phosphotransferase enzyme IImtl in the unphosphorylated state has been investigated by measuring mannitol binding to cytoplasmic membrane vesicles with a right-side-out and inside-out orientation. Enzyme IImtl is shown to catalyze facilitated diffusion of mannitol at a low rate. At equilibrium, bound mannitol is situated at the periplasmic side of the membrane. The apparent binding constant is 40 nM for the intact membranes. Solubilization of the membranes in detergent decreases the affinity by about a factor of 2. Inside-out membrane vesicles, treated with trypsin to remove the C-terminal cytoplasmic domain of enzyme IImtl, showed identical activities. These experiments indicate that the translocation of mannitol is catalyzed by the membrane-bound N-terminal half of enzyme IImtl which is a structurally stable domain.  相似文献   

12.
The enzyme IImannitol (EIImtl) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) catalyses the uptake and concomitant phosphorylation of mannitol by bacteria; it is specified by the gene mtlA. MtlA is located near the genes mtlF and mtlD in the staphylococcal genome, encoding the enzyme IIImtl and the mannitol-1-phosphate dehydrogenase, respectively. We present the cloning of the whole operon by a novel complementation system which is generally suitable for cloning Gram-positive PTS genes. The nucleotide sequence of a 2.5-kbp subclone spanning mtlA has been determined. From the deduced amino acid sequence, it is predicted that the membrane-protein EIImtl consists of 505 amino acid residues (54112 Da). The protein has the expected hydropathy profile of an integral-membrane protein. The NH2-terminal part of the enzyme resides within the membrane, whereas the COOH-terminus of the enzyme has the properties of a soluble protein. Comparison with the known amino acid sequence of EIImtl of Escherichia coli [Lee, C. A. & Saier, M. H. (1983) J. Biol. Chem. 258, 10761-10767] showed significant similarity. The motif containing the cysteine, which is the putative second phosphorylation site in EIImtl of E. coli [Pas, H. H. & Robillard, G. T. (1988) Biochemistry 27, 5835-5839], is well conserved in EIImtl of Staphylococcus carnosus. Chemical modification of the single active site cysteine residue by Ellman's reagent leads to total inactivation, which can be reversed by treatment with 2-mercaptoethanol.  相似文献   

13.
14.
M Yamada  B U Feucht    M H Saier  Jr 《Journal of bacteriology》1987,169(12):5416-5422
The gut operon was subcloned into various plasmid vectors (M. Yamada and M. H. Saier, Jr., J. Bacteriol. 169:2990-2994, 1987). Constitutive expression of the plasmid-encoded operon prevented utilization of alanine and Krebs cycle intermediates when they were provided as sole sources of carbon for growth. Expression of the gutB gene alone (encoding the glucitol enzyme III), subcloned downstream from either the lactose promoter or the tetracycline resistance promoter, inhibited utilization of the same compounds. On the other hand, overexpression of the gutA gene (encoding the glucitol enzyme II) inhibited the utilization of a variety of sugars as well as alanine and Krebs cycle intermediates by an apparently distinct mechanism. Phosphoenolpyruvate carboxykinase activity was greatly reduced in cells expressing high levels of the cloned gutB gene but was nearly normal in cells expressing high levels of the gutA gene. A chromosomal mutation in the gutR gene, which gave rise to constitutive expression of the chromosomal gut operon, also gave rise to growth inhibition on gluconeogenic substrates as well as reduced phosphoenolpyruvate carboxykinase activity. Phosphoenolpyruvate synthase activity in general varied in parallel with that of phosphoenolpyruvate carboxykinase. These results suggest that high-level expression of the glucitol enzyme III of the phosphotransferase system can negatively regulate gluconeogenesis by repression or inhibition of the two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.  相似文献   

15.
The quantitative effects of variations in the amount of enzyme IIGlc of the phosphoenolpyruvate:glucose phosphotransferase system (PTS) on glucose metabolism in Escherichia coli were studied. The level of enzyme IIGlc could be adjusted in vivo to between 20 and 600% of the wild-type chromosomal level by using the expression vector pTSG11. On this plasmid, expression of the structural gene for enzyme IIGlc, ptsG, is controlled by the tac promoter. As expected, the control coefficient (i.e., the relative increase in pathway flux, divided by the relative increase in amount of enzyme) of enzyme IIGlc decreased in magnitude if a more extensive pathway was considered. Thus, at the wild-type level of enzyme IIGlc activity, the control coefficient of this enzyme on the growth rate on glucose and on the rate of glucose oxidation was low, while the control coefficient on uptake and phosphorylation of methyl alpha-glucopyranoside (an enzyme IIGlc-specific, nonmetabolizable glucose analog) was relatively high (0.55 to 0.65). The implications of our findings for PTS-mediated regulation, i.e., inhibition of growth on non-PTS compounds by glucose, are discussed.  相似文献   

16.
The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.  相似文献   

17.
Thirteen glucose analogues bearing electrophilic groups were synthesized (five of them for the first time) and screened as inhibitors of the glucose transporter (EIIGlc) of the Escherichia coli phosphoenolpyruvate-sugar phosphotransferase system (PTS). 2',3'-Epoxypropyl beta-d-glucopyranoside (3a) is an inhibitor and also a pseudosubstrate. Five analogues are inhibitors of nonvectorial Glc phosphorylation by EIIGlc but not pseudosubstrates. They are selective for EIIGlc as demonstrated by comparison with EIIMan, another Glc-specific but structurally different transporter. 3a is the only analogue that inhibits EIIGlc by binding to the high-affinity cytoplasmic binding site and also strongly inhibits sugar uptake mediated by this transporter. The most potent inhibitor in vitro, methyl 6,7-anhydro-d,l-glycero-alpha-d-gluco-heptopyranoside (1d), preferentially interacts with the low-affinity cytoplasmic site but only weakly inhibits Glc uptake. Binding and/or phosphorylation from the cytoplasmic side of EIIGlc is more permissive than sugar binding and/or translocation of substrates via the periplasmic site. EIIGlc is rapidly inactivated by the 6-O-bromoacetyl esters of methyl alpha-d-glucopyranoside (1a) and methyl alpha-d-mannopyranoside (1c), methyl 6-deoxy-6-isothiocyanato-alpha-d-glucopyranoside (1e), beta-d-glucopyranosyl isothiocyanate (3c) and beta-d-glucopyranosyl phenyl isothiocyanate (3d). Phosphorylation of EIIGlc protects, indicating that inactivation occurs by alkylation of Cys421. Glc does not protect, but sensitizes EIIGlc for inactivation by 1e and 3d, which is interpreted as the effect of glucose-induced conformational changes in the dimeric transporter. Glc also sensitizes EIIGlc for inactivation by 1a and 1c of uptake by starved cells. This indicates that Cys421 which is located on the cytoplasmic domain of EIIGlc becomes transiently accessible to substrate analogues on the periplasmic side of the transporter.  相似文献   

18.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   

19.
Enzyme I (EI) is the first protein in the phosphotransfer sequence of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This system catalyzes sugar phosphorylation/transport and is stringently regulated. Since EI homodimer accepts the phosphoryl group from phosphoenolpyruvate (PEP), whereas the monomer does not, EI may be a major factor in controlling sugar uptake. Previous work from this and other laboratories (e.g. Dimitrova, M. N., Szczepanowski, R. H., Ruvinov, S. B., Peterkofsky, A., and Ginsburg A. (2002) Biochem. 41, 906-913), indicate that K(a) is sensitive to several parameters. We report here a systematic study of K(a) determined by sedimentation equilibrium, which showed that it varied by 1000-fold, responding to virtually every parameter tested, including temperature, phosphorylation, pH (6.5 versus 7.5), ionic strength, and especially the ligands Mg(2+) and PEP. This variability may be required for a regulatory protein. Further insight was gained by analyzing EI by sedimentation velocity, by near UV CD spectroscopy, and with a nonphosphorylatable active site mutant, EI-H189Q, which behaved virtually identically to EI. The singular properties of EI are explained by a model consistent with the results reported here and in the accompanying paper (Patel, H. V., Vyas, K. A., Mattoo, R. L., Southworth, M., Perler, F. B., Comb, D., and Roseman, S. (2006) J. Biol. Chem. 281, 17579-17587). We suggest that EI and EI-H189Q each comprise a multiplicity of conformers and progressively fewer conformers as they dimerize and bind Mg(2+) and finally PEP. Mg(2+) alone induces small or no detectable changes in structure, but large conformational changes ensue with Mg(2+)/PEP. This effect is explained by a "swiveling mechanism" (similar to that suggested for pyruvate phosphate dikinase (Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh, S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2652-2657)), which brings the C-terminal domain with the two bound ligands close to the active site His(189).  相似文献   

20.
MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B. subtilis and C. crescentus, the mreB gene is essential. However, in E. coli, mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD-encoded components were essential. We found that cells depleted of mreBCD became spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mreBCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and MreD. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli MreBCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号