首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe norpA mutations in Drosophila eliminate the photoreceptor potential and render the fly completely blind. Recent biochemical analyses have shown that norpA mutants lack phospholipase C (PLC) activity in the eye. A combination of chromosomal walking and transposon-mediated mutagenesis was used to clone the norpA gene. This gene encodes a 7.5 kb RNA that is expressed in the adult head. In situ hybridizations of norpA cDNA to adult tissue sections show that this gene is expressed abundantly in the retina. The putative norpA protein is composed of 1095 amino acid residues and has extensive sequence similarity to a PLC amino acid sequence from bovine brain. We suggest that the norpA gene encodes a PLC expressed in the eye of Drosophila and that PLC is an essential component of the Drosophila phototransduction pathway.  相似文献   

2.
The properties of the major visual pigment of Drosophila melanogaster were evaluated. The visual pigment was isolated from other protein components using acrylamide gel electrophoresis and spectral identification. Sodium dodecyl sulfate (SDS) acrylamide gels of the isolated visual pigment gave a single protein subunit with a mol wt of 37,000 daltons. The rhodopsin480 molar extinction coefficient was 35,000 liter/mol-cm (+/- 2,700 SE). The metarhodopsin580 molar extinction coefficient was approximately 56,000 liter/mol-cm. Microspectrophotometry was used to compare the rhodopsin concentrations in wild-type flies and norpA vision transduction mutants. At 2 days of age (12 h dark-12 h light cycle, 19 degrees C) all of the norpA flies exhibited a similar rhodopsin concentration (75% of the wild-type strain). By 21 days of age some of the norpA alleles showed substantially reduced rhodopsin concentrations (16-43% of normal), whereas others showed no major age-dependent decreases (68-77%). Temperature and light-dark cycle affected the reduction. Alleles with no receptor potential exhibited the largest decreases in rhodopsin concentration. The data indicate that the norpA phototransduction mutant has a defect in the system responsible for maintaining the rhodopsin480 concentration. This defect in the rhodopsin maintenance system does not appear to be the cause of the reduced electroretinogram (ERG) amplitude observed in some of these mutants, but instead is a consequence of the decrease in ERG amplitude, or the flaw(s) responsible for the decrease in ERG amplitude.  相似文献   

3.
Summary The maintenance of photoreceptor cell membranes in the blowfly was investigated in relation to the diurnal cycle, age, and therpa (receptor potential absent) phototransduction mutation. The effect of disturbed membrane assembly on the electrical membrane properties was examined using single-electrode discontinuous current-clamp techniques. In wild-type flies the cross-sectional dimensions of the rhabdomeres were markedly reduced with age, and the quantity of synthetic organelles decreased concurrently, whereas no correlation was found between the diurnal cycle and membrane turnover. Therpa mutation is thought to block the visual transduction cascade in photoreceptor cells and to lead to degeneration of the photoreceptor cell bodies. The volume of rhabdomeres decreased markedly inrpa mutants and the quantity of synthetic organelles was reduced significantly, indicating an imbalance between photoreceptive membrane renewal and degradation. Also, the plasma membrane underwent degenerative changes. The passive electrical properties of photoreceptor cells — resting membrane voltages and input resistances — were only slightly changed from those of wild-type flies, although the photoreceptive membrane did not depolarize in response to light. This indicates no apparent disturbance in the function of the ionic channels in these membranes. Taken together, these results suggest that the photoreceptor cells need a functional phototransduction cascade with its feedback controls to maintain continuous renewal of rhabdomeres, but that the plasma membrane maintains its normal electrochemical properties despite extreme morphological degeneration of photoreceptor cell.  相似文献   

4.
The phosphorylation of photoreceptor phospholipids in the three alleles of Drosophila visual mutants (norpA: no receptor potential A gene) was studied. In the normal strain, the gamma-32P of ATP was transferred mainly to phosphatidic acid (PA) and diphosphoinositide (DPI), while, in the mutants, we found that the phosphorylation of PA was drastically reduced, but that of DPI was not. The radioactivity incorporation into PA closely parallels with the degree of the mutant genes' expressivity among the three alleles of norpA tested. Therefore, the abnormality found in the phosphorylation of diglycerol to PA may be closely related to the primary mutant defect in the phototransduction mechanism.  相似文献   

5.
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.  相似文献   

6.
The electrophysiological characteristics of norpAH52, a temperature sensitive phototransduction mutant of Drosophila melanogaster, were studied in vivo. Upon raising the environmental temperature to 33-37 degrees C, mutant flies exhibited time-dependent changes in photoresponses. Initial observations were losses in responsiveness at low light intensities and prolonged receptor potential waveforms. Next, reductions in response amplitudes at higher light intensities occurred, until no responses were obtained. On return to lower temperature the electrophysiological properties recovered in reverse order. Based on these observations we conclude that the primary defect of norpA affects the efficiency of the phototransduction process. Enhanced light exposure could offset the receptor potential changes in norpA. With the temperature sensitive mutant: (1) additional light exposure prolonged the time that responses could be observed at the higher temperature, (2) when 1-s illuminations no longer elicited responses at the higher temperature, 1-min illuminations at the same intensity temporarily restored the ability to obtain 1-s-responses, and (3) light accelerated the restoration of responses on return to lower temperature. Illumination also had an effect on non-temperature sensitive norpA mutants, enabling the production of small photoresponses in norpAH44, a mutant that normally does not exhibit any responses, and improving the low-light-intensity responses of norpAP16. Our study indicates that the PI cycle, which is inhibited in norpA mutants (Yoshioka et al. 1985), is an important light-sensitive positive step or effector in the production of receptor potential responses.  相似文献   

7.
The ninaC gene encodes two retinal specific proteins (p132 and p174) consisting of a protein kinase domain joined to a domain homologous to the head region of the myosin heavy chain. The putative myosin domain of p174 is linked at the COOH-terminus to a tail which has some similarities to myosin-I tails. In the current report, we demonstrate that the ninaC mutation results in light- and age-dependent retinal degeneration. We also show that ninaC flies display an electrophysiological phenotype before any discernible retinal degeneration indicating that the electrophysiological defect is the primary effect of the mutation. This suggests that ninaC has a role in phototransduction and that the retinal degeneration is a secondary effect resulting from the defect in phototransduction. To examine the requirements for the individual ninaC isoforms, mutant alleles were generated which express only p132 or p174. Elimination of p174 resulted in a ninaC phenotype as strong as the null allele; however, elimination of p132 had little if any effect. As a first step in investigating the basis for the difference in requirements for p174 and p132 we performed immuno-localization at the electron microscopic level and found that the two isoforms display different subcellular distributions in the photoreceptor cells. The p132 protein is restricted primarily to the cytoplasm and p174 to the rhabdomeres, the microvillar structure which is the site of action of many of the steps in phototransduction. This suggests that the p174 myosin-I type tail is the domain responsible for association with the rhabdomeres and that the substrate for the p174 putative kinase may be a rhabdomeric protein important in photo-transduction.  相似文献   

8.
A large number of mutants in the norpA gene, which encodes the phospholipase C (PLC) involved in Drosophila phototransduction, is available for the investigation of the effects of specific amino acid substitutions in PLC on biochemical and electrophysiological properties of these mutants. Of the 47 norpA mutants screened for PLC protein content, all but one (H43) displayed drastically decreased amounts of the protein suggesting that almost any mutational alteration has a deleterious effect on the integrity of the protein. Three new amino acids were identified in the catalytic domains X and Y that are important for PLC catalytic activity and the generation of photoreceptor responses (ERG). One of them was found substituted in H43, which showed a low specific PLC activity, a pronounced decrease in ERG sensitivity, and a wild-type-like response termination time. The response termination times obtained from three mutants was found to be approximately inversely proportional to the amount of PLC. In addition, we show that (i) the specific PLC activity is a key factor determining the photoreceptor sensitivity; (ii) the catalytic activity and response termination are separable functions of PLC; and (iii) a mutation in the putative G alpha-interacting C2 domain causes a preferentially strong defect in latency.  相似文献   

9.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

10.
The cyclophilin homolog ninaA is required in the secretory pathway   总被引:38,自引:0,他引:38  
N J Colley  E K Baker  M A Stamnes  C S Zuker 《Cell》1991,67(2):255-263
In Drosophila, the major rhodopsin Rh1 is synthesized in endoplasmic reticulum (ER)-bound ribosomes of the R1-R6 photoreceptor cells and is then transported to the rhabdomeres where it functions in phototransduction. Mutations in the cyclophilin homolog ninaA lead to a 90% reduction in Rh1 opsin. Cyclophilins have been shown to be peptidyl-prolyl cis-trans isomerases and have been implicated in catalyzing protein folding. We now show that mutations in the ninaA gene severely inhibit opsin transport from the ER, leading to dramatic accumulations of ER cisternae in the photoreceptor cells. These results demonstrate that ninaA functions in the ER. Interestingly, ninaA and Rh1 also colocalize to secretory vesicles, suggesting that Rh1 may require ninaA as it travels through the distal compartments of the secretory pathway. These results are discussed in relation to the possible role of cyclophilins in protein folding and intracellular protein trafficking.  相似文献   

11.
Wang T  Wang X  Xie Q  Montell C 《Neuron》2008,57(1):56-68
Phosphoinositide-specific phospholipase C (PLC) isozymes play roles in a diversity of processes including Drosophila phototransduction. In fly photoreceptor cells, the PLCbeta encoded by norpA is critical for activation of TRP channels. Here, we describe a PLCbeta regulator, STOPS, which encodes a SOCS box protein. Mutation of stops resulted in a reduced concentration of NORPA and a defect in stopping signaling following cessation of the light stimulus. NORPA has been proposed to have dual roles as a PLC- and GTPase-activating protein (GAP). We found that the slow termination resulting from expressing low levels of wild-type NORPA was suppressed by addition of normal amounts of an altered NORPA, which had wild-type GAP activity, but no PLC activity. STOPS is the first protein identified that specifically regulates PLCbeta protein concentration. Moreover, this work demonstrates that a PLCbeta derivative that does not promote TRP channel activation, still contributes to signaling in vivo.  相似文献   

12.
Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen.  相似文献   

13.
Drosophila INAD, which contains five tandem protein interaction PDZ domains, plays an important role in the G protein-coupled visual signal transduction. Mutations in InaD alleles display mislocalization of signaling molecules of phototransduction which include the essential effector, phospholipase C-beta (PLC-beta), which is also known as NORPA. The molecular and biochemical details of this functional link are unknown. We report that INAD directly binds to NORPA via two terminally positioned PDZ1 and PDZ5 domains. PDZ1 binds to the C-terminus of NORPA, while PDZ5 binds to an internal region overlapping with the G box-homology region (a putative G protein-interacting site). The NORPA proteins lacking binding sites, which display normal basal PLC activity, can no longer associate with INAD in vivo. These truncations cause significant reduction of NORPA protein expression in rhabdomeres and severe defects in phototransduction. Thus, the two terminal PDZ domains of INAD, through intermolecular and/or intramolecular interactions, are brought into proximity in vivo. Such domain organization allows for the multivalent INAD-NORPA interactions which are essential for G protein-coupled phototransduction.  相似文献   

14.
Chlamydiae are obligate intracellular bacteria which occupy a non-acidified vacuole (the inclusion) throughout their developmental cycle. Little is known about events leading to the establishment and maintenance of the chlamydial inclusion membrane. To identify chlamydial proteins which are unique to the intracellular phase of the life cycle, an expression library of Chlamydia psittaci DNA was screened with convalescent antisera from infected animals and hyperimmune antisera generated against formalin-killed purified chlamydiae. Overlapping genomic clones were identified which expressed a 39 kDa protein only recognized by the convalescent sera. Sequence analysis of the clones identified two open reading frames (ORFs), one of which (ORF1) coded for a predicted 39 kDa gene product. The ORF1 sequence was amplified and fused to the malE gene of Escherichia coli and antisera were raised against the resulting fusion protein. Immunoblotting with these antisera demonstrated that the 39 kDa protein was present in lysates of infected cells and in reticulate bodies (RBs), but was at the limit of detection in lysates of purified C. psittaci elementary bodies. Fluorescence microscopy experiments demonstrated that this protein was localized in the inclusion membrane of infected HeLa cells, but was not detected on the developmental forms within the inclusion. Because the protein produced by ORF1 is deposited on the inclusion membrane of infected cells, this gene has been designated incA, (inc lusion membrane protein A ) and its gene product, IncA. In addition to the inclusion membrane, these antisera labelled structures that extended from the inclusion over the nucleus or into the cytoplasm of infected cells. Immunoblotting also demonstrated that IncA, in lysates of infected cells, had a migration pattern that seemed indicative of post-translational modification. This pattern was not observed in immunoblots of RBs or in the E. coli expressing IncA. Collectively, these data identify a chlamydial gene which codes for a protein that is released from RB and is localized in the inclusion membrane of infected cells.  相似文献   

15.
Drosophila inactivation no afterpotential D (INAD) is a PDZ domain-containing scaffolding protein that tethers components of the phototransduction cascade to form a supramolecular signaling complex. Here, we report the identification of eight INAD phosphorylation sites using a mass spectrometry approach. PDZ1, PDZ2, and PDZ4 each harbor one phosphorylation site, three phosphorylation sites are located in the linker region between PDZ1 and 2, one site is located between PDZ2 and PDZ3, and one site is located in the N-terminal region. Using a phosphospecific antibody, we found that INAD phosphorylated at Thr170/Ser174 was located within the rhabdomeres of the photoreceptor cells, suggesting that INAD becomes phosphorylated in this cellular compartment. INAD phosphorylation at Thr170/Ser174 depends on light, the phototransduction cascade, and on eye-Protein kinase C that is attached to INAD via one of its PDZ domains.  相似文献   

16.
Papers by and, in this issue of Neuron, describe how massive and rapid translocation of specific elements of the phototransduction cascades in different phyla, namely, the G protein (transducin) in vertebrate rods and light-sensitive TRPL channels in the microvillar rhabdomeres of Drosophila, contribute to photoreceptor adaptation.  相似文献   

17.
Y. Yang  D. Ballinger 《Genetics》1994,138(2):413-421
Calphotin is a Drosophila photoreceptor cell-specific protein expressed very early in eye development, at the time when cell-type decisions are being made. Calphotin is a very hydrophobic and proline-rich protein which lacks obvious transmembrane domains. The cDNA encoding Calphotin was mapped to a region removed by a set of existing chromosomal deletions. Mutations that alter photoreceptor cell structure and development were isolated that fail to complement these deletions. These mutations fall into two classes. Class I mutations alter the structure of the rhabdomere, a photoreceptor cell organelle specialized for phototransduction. Class II mutations have rough eyes, due to misorientation of the rhabdomeres and photoreceptor cell death. Transformation rescue of these phenotypes in transgenic flies bearing calphotin genomic DNA indicates that both classes of mutations are in the calphotin gene. Analysis of these mutations suggest that Calphotin plays important roles in both rhabdomere development and in photoreceptor cell survival.  相似文献   

18.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

19.
The prion protein (PrP) 27-30 is the major macromolecular component in highly purified preparations of prions derived from scrapie-infected hamster brain. Immunoblotting studies demonstrated that this protein is generated by partial protease digestion of a larger precursor (PrPSc) with an apparent Mr of 33 to 35 kDa, and that a protease-sensitive cellular PrP isoform, designated PrPC, is present in normal hamster brain. To characterize the relationships among these proteins, ELISA and immunoblotting studies were undertaken with rabbit antisera raised against three synthetic PrP peptides. All three antisera were found to specifically react with the prion proteins, and failed to identify other lower or higher m.w. PrP proteins. Our results provide evidence that the primary structures of PrP 27-30, PrPSc, and PrPC are related; this conclusion supports molecular cloning studies indicating that these proteins are encoded by the same chromosomal gene.  相似文献   

20.
《Fly》2013,7(4):356-368
Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca2+ influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP2, or mediate the Ca2+-dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca2+ following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号