首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents.  相似文献   

3.
Cell-free extracts obtained from free-livingRhizobium sp. in early stationary phase had three times as much 5-aminolevulinate synthase activity as did similar extracts from log phase cells. The level of 5-aminolevulinate dehydratase was also elevated at this point. The presence of 0.1 mM hemin in the culture medium prevented the transitory increase in enzyme activities during this early stationary phase. The effect of hemin was counteracted by 1 mg bovine serum albumin per milliliter medium. This control of the development of 5-aminolevulinate synthase and 5-aminolevulinate dehydratase activities by free hemin suggests a mechanism by which heme and globin formation might be coordinated for the synthesis of leghemoglobin in legume root nodules.  相似文献   

4.
Cell fractionation of Trypanosoma brucei cultured procyclic stages showed that the key enzyme of glycerol-ether lipid synthesis, dihydroxyacetone-phosphate acyltransferase (EC 2.3.1.42) was exclusively associated with the microbody fraction. These organelles contained in addition 1-acyl glycerol-3-phosphate: NADP+ oxidoreductase (EC 1.1.1.101) and acyl-CoA reductase and were capable of utilizing DHAP, but not G-3-P, as substrate for lysophosphatidic acid formation. It is concluded that in T. brucei the glycosomes are the exclusive site of the synthesis of precursors for glycerol-ether lipid synthesis and that they contain the entire pathway to form alkoxylipids from glycerol and acyl-CoA.  相似文献   

5.
Glutamine-dependent carbamyl phosphate synthetase of rat liver, purified about 2,100-fold, existed as a complex with aspartate transcarbamylase and dihydroorotase, the second and third enzymes of pyrimidine biosynthesis, with a sedimentation coefficient of 27 S. Treatment of this complex with pancreatic elastase caused a selective inactivation of the transcarbamylase with concomitant dissociation of the complex. The dissociated synthetase was as sensitive to allosteric effectors as the enzyme within the complex, but had a 5 times higher apparent Km for MgATP2?. This change appears to be intimately related to the release of the enzyme from the complex.  相似文献   

6.
Cytoplasmic steps of peptidoglycan biosynthesis   总被引:2,自引:0,他引:2  
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.  相似文献   

7.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

8.
9.
Mycothiol is the major thiol present in most actinomycetes and is produced from the pseudodisaccharide 1D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins). A transposon mutant of Mycobacterium smegmatis shown to be GlcNAc-Ins and mycothiol deficient was sequenced to identify a putative glycosyltransferase gene designated mshA. The ortholog in Mycobacterium tuberculosis, Rv0486, was used to complement the mutant phenotype.  相似文献   

10.
M Mori  H Ishida  M Tatibana 《Biochemistry》1975,14(12):2622-2630
Glutamine-dependent carbamoyl-phosphate synthetase was purified about 2100-fold from the cytosol of rat liver using 30% (v/v) dimethyl sulfoxide and 5% (w/v) glycerol as stabilizers. Throughout the purification, aspartate transcarbamylase and dihydroorotase, the second and third enzymes of pyrimidine biosynthesis, were copurified with the synthetase. These three enzymes sedimented as a single peak with a sedimentation coefficient of 27 S in sucrose gradients containing the stabilizers, indicating their existence as a multienzyme complex. The aggregation states of the complex were analyzed by sucrose gradient centrifugation under conditions approximating those used for enzymatic assay and correlated with the kinetic properties of the synthetase. In the presence of 10% glycerol and 10 mM MgATP(2-) at 18 degrees, the synthetase showed high activity and the three enzymes sedimented as a single peak with a coefficient of 25 S. The three enzymes also existed as a complex with the same coefficient when 50 muM PP-ribose-P was added in place of MgATP(2-), the sedimentation coefficient of the complex shifted to 28 S, indicating alteration in its molecular shape, rather than size. With 10% glycerol alone, the complex partially dissociated and the synthetase activity appeared in three peaks with coefficients of 26, 19, and 9 S (carbamoyl-phosphate synthetases (CPSase) a, b, and c, respectively). CPSases a, b, and c, thus obtained, were all sensitive to regulation by UTP and PP-ribose-P, but they differed MgATP(2-) (5.1, 4.8, AND 1.7 mM for CPSases a and b, and the enzyme within the original complex, respectively) and in their sensitivities to effectors. These results suggest that the aggregation may modify the catalytic and regulatory properties of the synthetase; Attempts to reassociate the components were unsuccessful.  相似文献   

11.
Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about 10% of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).  相似文献   

12.
Temporal separation of steps in the biosynthesis of verruculogen   总被引:2,自引:0,他引:2  
A mixture of 2[3H] mevalonate and U[14C] proline, given to Penicillium simplicissimum on days 2, 3, 4, 5 or 6 of stationary liquid culture, gave rise to radiolabelled verruculogen in which the ratio of 3H to 14C measured on day 8 increased from 2.0:1 to 9.5:1 over the period of administration of radiolabelled precursors. This suggests temporal separation of the formation of the diketopiperazine moiety and its subsequent prenylation. The putative precursor diketopiperazine, cyclo-L-tryptophanyl-L-proline, was isolated from 21 day culture broth.  相似文献   

13.
Data mining of the Corynebacterium glutamicum genome identified 4 genes analogous to the mshA, mshB, mshC, and mshD genes that are involved in biosynthesis of mycothiol in Mycobacterium tuberculosis and Mycobacterium smegmatis. Individual deletion of these genes was carried out in this study. Mutants mshC- and mshD- lost the ability to produce mycothiol, but mutant mshB- produced mycothiol as the wild type did. The phenotypes of mutants mshC- and mshD- were the same as the wild type when grown in LB or BHIS media, but mutants mshC- and mshD- were not able to grow in mineral medium with gentisate or 3-hydroxybenzoate as carbon sources. C. glutamicum assimilated gentisate and 3-hydroxybenzoate via a glutathione-independent gentisate pathway. In this study it was found that the maleylpyruvate isomerase, which catalyzes the conversion of maleylpyruvate into fumarylpyruvate in the glutathione-independent gentisate pathway, needed mycothiol as a cofactor. This mycothiol-dependent maleylpyruvate isomerase gene (ncgl2918) was cloned, actively expressed, and purified from Escherichia coli. The purified mycothiol-dependent isomerase is a monomer of 34 kDa. The apparent Km and Vmax values for maleylpyruvate were determined to be 148.4 +/- 11.9 microM and 1520 +/- 57.4 micromol/min/mg, respectively (mycothiol concentration, 2.5 microM). Previous studies had shown that mycothiol played roles in detoxification of oxidative chemicals and antibiotics in streptomycetes and mycobacteria. To our knowledge, this is the first demonstration that mycothiol is essential for growth of C. glutamicum with gentisate or 3-hydroxybenzoate as carbon sources and the first characterization of a mycothiol-dependent maleylpyruvate isomerase.  相似文献   

14.
All living species require protection against the damaging effects of the reactive oxygen species that are a natural by-product of aerobic life. In most organisms, glutathione is a critical component of these defences, maintaining a reducing environment inside cells. Some bacteria, however, including pathogenic mycobacteria, use an alternative low molecular mass thiol compound called mycothiol (MSH) for this purpose. Enzymes that synthesize MSH are attractive candidates for the design of novel anti-TB drugs because of the importance of MSH for mycobacterial life and the absence of such enzymes in humans. We have determined the three-dimensional structure of MshB (Rv1170), a metal-dependent deacetylase from Mycobacterium tuberculosis that catalyses the second step in MSH biosynthesis. The structure, determined at 1.9A resolution by X-ray crystallography (R=19.0%, R(free)=21.4%), reveals an alpha/beta fold in which helices pack against a seven-stranded mostly parallel beta-sheet. Large loops emanating from the C termini of the beta-strands enclose a deep cavity, which is the location of the putative active site. At the bottom of this cavity is a metal-binding site associated with a sequence motif AHPDDE that is invariant in all homologues. An adventitiously bound beta-octylglucoside molecule, used in crystallization, enables us to model the binding of the true substrate and propose a metal-dependent mechanistic model for deacetylation. Sequence comparisons indicate that MshB is representative of a wider family of enzymes that act on substituted N-acetylglucosamine residues, including a deacetylase involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors in eukaryotes.  相似文献   

15.
BackgroundPrenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.MethodsComputational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.ResultsGlu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.ConclusionsThe role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.SignificanceMechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.  相似文献   

16.
Mycothiol is the predominant thiol in most actinomycetes, including Mycobacterium tuberculosis, and appears to play a role analogous to glutathione, which is not found in these bacteria. The enzymes involved in mycothiol biosynthesis are of interest as potential targets for new drugs directed against tuberculosis. In this work we describe the isolation and characterization of a Tn 5 transposon mutant of Mycobacterium smegmatis that is blocked in the production of mycothiol and accumulates its precursor, 1 D-myo-inosityl 2- L-cysteinylamido-2-deoxy-alpha-D-glucopyranoside (Cys-GlcN-Ins). Cys-GlcN-Ins isolated from this mutant was used to assay for acetyl-CoA:Cys-GlcN-Ins acetyltransferase (mycothiol synthase, MshD) activity, which was found in wild-type cells, but not in the mutant. Sequencing outward of the DNA of the mutant strain from the site of insertion permitted identification of the mshD gene in the M. smegmatis genome, as well as the orthologous gene Rv0819 in the M. tuberculosis genome. Cloning and expression of mshD from M. tuberculosis (Rv0819) in Escherichia coli gave a transformant with MshD activity, demonstrating that Rv0819 is the mshD mycothiol biosynthesis gene.  相似文献   

17.
Current models for regulation of heme synthesis during erythropoiesis propose that the first enzyme of the pathway, 5-aminolevulinate synthase (ALAS), is the rate-limiting enzyme. We have examined cellular porphyrin excretion in differentiating murine erythroleukemia cells to determine in situ rate-limiting steps in heme biosynthesis. The data demonstrate that low levels of coproporphyrin and protoporphyrin accumulate in the culture medium under normal growth conditions and that during erythroid differentiation the level of excretion of coproporphyrin increases approximately 100-fold. Iron supplementation lowered, but did not eliminate, porphyrin accumulation. While ALAS induction is necessary for increased heme synthesis, these data indicate that other enzymes, in particular coproporphyrinogen oxidase, represent down-stream rate-limiting steps.  相似文献   

18.
Early steps in the biosynthesis of mycobactins P and S   总被引:1,自引:0,他引:1  
1. Lysine is readily incorporated into mycobactins P and S. Incorporation is into the hydroxamic acid moieties only and is equal in the mycobactic acid and cobactin portions of the molecule. 2. 2-Amino-6-hydroxyaminohexanoic acid is not taken up by cells of Mycobacterium phlei and is not detectable in extracts of cells actively synthesizing mycobactin. 3. The most abundant material derived from lysine that can be detected in such cell extracts is an N(6)-acyl-lysine. Cells grown in the presence of iron contain markedly less of this material than do those grown under conditions of iron deficiency. 4. When added to growing cultures of M. phlei the N(6)-acyl-lysine is readily incorporated into mycobactin. 5. The hydroxy acid of cobactin P is derivable from propionate.  相似文献   

19.
The heme biosynthesis pathway in the yeast Saccharomyces cerevisiae is a highly regulated system, but the mechanisms accounting for this regulation remain unknown. In an attempt to identify rate-limiting steps in heme synthesis, which may constitute potential regulatory points, we constructed yeast strains overproducing two enzymes of the pathway: the porphobilinogen synthase (PBG-S) and deaminase (PBG-D). Biochemical analysis of the enzyme-overproducing strains revealed intracellular porphobilinogen and porphyrin accumulation. These results indicate that both enzymes play a rate-limiting role in yeast heme biosynthesis.  相似文献   

20.
Intrinsic signals regulate the initial steps of myogenesis in vertebrates   总被引:8,自引:0,他引:8  
In vertebrates, despite the evidence that extrinsic factors induce myogenesis in naive mesoderm, other experiments argue that the initiation of the myogenic program may take place independent of these factors. To resolve this discrepancy, we have re-addressed this issue, using short-term in vivo microsurgery and culture experiments in chick. Our results show that the initial expression of the muscle-specific markers Myf5 and MyoD is regulated in a mesoderm-autonomous fashion. The reception of a Wnt signal is required for MyoD, but not Myf5 expression; however, we show that the source of the Wnt signal is intrinsic to the mesoderm. Gain- and loss-of-function experiments indicate that Wnt5b, which is expressed in the presomitic mesoderm, represents the MyoD-activating cue. Despite Wnt5b expression in the presomitic mesoderm, MyoD is not expressed in this tissue: our experiments demonstrate that this is due to a Bmp inhibitory signal that prevents the premature expression of MyoD before somites form. Our results indicate that myogenesis is a multistep process which is initiated prior to somite formation in a mesoderm-autonomous fashion; as somites form, influences from adjacent tissues are likely to be required for maintenance and patterning of early muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号