首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

2.
3.
We build on previous observations that Hill–Robertson interference generates an advantage of sex that, in structured populations, can be large enough to explain the evolutionary maintenance of costly sex. We employed a gene network model that explicitly incorporates interactions between genes. Mutations in the gene networks have variable effects that depend on the genetic background in which they appear. Consequently, our simulations include two costs of sex—recombination and migration loads—that were missing from previous studies of the evolution of costly sex. Our results suggest a critical role for population structure that lies in its ability to align the long‐ and short‐term advantages of sex. We show that the addition of population structure favored the evolution of sex by disproportionately decreasing the equilibrium mean fitness of asexual populations, primarily by increasing the strength of Muller's Ratchet. Population structure also increased the ability of the short‐term advantage of sex to counter the primary limit to the evolution of sex in the gene network model—recombination load. On the other hand, highly structured populations experienced migration load in the form of Dobzhansky–Muller incompatibilities, decreasing the effective rate of migration between demes and, consequently, accelerating the accumulation of drift load in the sexual populations.  相似文献   

4.
5.
Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed contact networks in which some contacts are undirected-the probability of transmission is symmetric between individuals-and others are directed-transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy of various hospital-based containment strategies during outbreaks of severe respiratory diseases.  相似文献   

6.
We study the evolution of large but finite asexual populations evolving in fitness landscapes in which all mutations are either neutral or strongly deleterious. We demonstrate that despite the absence of higher fitness genotypes, adaptation takes place as regions with more advantageous distributions of neutral genotypes are discovered. Since these discoveries are typically rare events, the population dynamics can be subdivided into separate epochs, with rapid transitions between them. Within one epoch, the average fitness in the population is approximately constant. The transitions between epochs, however, are generally accompanied by a significant increase in the average fitness. We verify our theoretical considerations with two analytically tractable bitstring models.  相似文献   

7.
The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.  相似文献   

8.
The relationship between system-level and subsystem-level master equations is investigated and then utilised for a systematic and potentially automated derivation of the hierarchy of moment equations in a susceptible-infectious-removed (SIR) epidemic model. In the context of epidemics on contact networks we use this to show that the approximate nature of some deterministic models such as mean-field and pair-approximation models can be partly understood by the identification of implicit anomalous terms. These terms describe unbiological processes which can be systematically removed up to and including the nth order by nth order moment closure approximations. These terms lead to a detailed understanding of the correlations in network-based epidemic models and contribute to understanding the connection between individual-level epidemic processes and population-level models. The connection with metapopulation models is also discussed. Our analysis is predominantly made at the individual level where the first and second order moment closure models correspond to what we term the individual-based and pair-based deterministic models, respectively. Matlab code is included as supplementary material for solving these models on transmission networks of arbitrary complexity.  相似文献   

9.
10.
The structure of protein evolution and the evolution of protein structure   总被引:4,自引:3,他引:1  
The observed distribution of protein structures can give us important clues about the underlying evolutionary process, imposing important constraints on possible models. The availability of results from an increasing number of genome projects has made the development of these models an active area of research. Models explaining the observed distribution of structures have focused on the inherent functional capabilities and structural properties of different folds and on the evolutionary dynamics. Increasingly, these elements are being combined.  相似文献   

11.
12.
The coexistence of different pathogen strains has implications for pathogen variability and disease control and has been explained in a number of different ways. We use contact networks, which represent interactions between individuals through which infection could be transmitted, to investigate strain coexistence. For sexually transmitted diseases the structure of contact networks has received detailed study and has been shown to be a vital determinant of the epidemiological dynamics. By using analytical pairwise models and stochastic simulations, we demonstrate that network structure also has a profound influence on the interaction between pathogen strains. In particular, when the population is serially monogamous, fully cross-reactive strains can coexist, with different strains dominating in network regions with different characteristics. Furthermore, we observe specialization of different strains in different risk groups within the network, suggesting the existence of diverging evolutionary pressures.  相似文献   

13.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

14.
Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual''s age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact.  相似文献   

15.
Learning and memory are related both to cognitive processes and to neurobiological mechanisms. The human pathology focused on the role of the hippocampus and animal experiments have analyzed its implications. The most usually admitted hypothesis is that memories are underlied by distributed specific neural networks defined through the strengthening of certain synapses, under the action of the flow of information during learning. The best candidate for this strengthening of the synapses is a change in synaptic plasticity similar to the artificial phenomenon of long-term potentiation. During memory processes, the hippocampus would play a particular role in information processing (analyzing novelty and significance of the information) and would allow the specification of the neural network, mainly in the cortical territories. We report data in olfactory learning in rats comforting these hypotheses. Considering neurochemistry of memory processes, specific synaptic changes and neuromodulatory processes must be distinguished. We report data about vasopressin illustrating both kinds of mechanisms in the hippocampus.  相似文献   

16.
Epistasis, or interactions between genes, has long been recognized as fundamentally important to understanding the structure and function of genetic pathways and the evolutionary dynamics of complex genetic systems. With the advent of high-throughput functional genomics and the emergence of systems approaches to biology, as well as a new-found ability to pursue the genetic basis of evolution down to specific molecular changes, there is a renewed appreciation both for the importance of studying gene interactions and for addressing these questions in a unified, quantitative manner.  相似文献   

17.
Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes.  相似文献   

18.
Sexually transmitted pathogens persist in populations despite the availability of biomedical interventions and knowledge of behavioural changes that would reduce individual-level risk. While behavioural risk factors are shared between many sexually transmitted infections, the prevalence of these diseases across different risk groups varies. Understanding this heterogeneity and identifying better control strategies depends on an improved understanding of the complex social contact networks over which pathogens spread. To date, most efforts to study the impact of sexual network structure on disease dynamics have focused on static networks. However, the interaction between the dynamics of partnership formation and dissolution and the dynamics of transmission plays a role, both in restricting the effective network accessible to the pathogen, and in modulating the transmission dynamics. We present a simple method to simulate dynamical networks of sexual partnerships. We inform the model using survey data on sexual attitudes and lifestyles, and investigate how the duration of infectiousness changes the effective contact network over which disease may spread. We then simulate several control strategies: screening, vaccination and behavioural interventions. Previous theory and research has advanced the importance of core groups for spread and control of STD. Our work is consistent with the importance of core groups, but extends this idea to consider how the duration of infectiousness associated with a particular pathogen interacts with host behaviours to define these high risk subpopulations. Characteristics of the parts of the network accessible to the pathogen, which represent the network structure of sexual contacts from the “point of view” of the pathogen, are substantially different from those of the network as a whole. The pathogen itself plays an important role in determining this effective network structure; specifically, we find that if the pathogen’s duration of infectiousness is short, infection is more concentrated in high-activity, high-concurrency individuals even when all other factors are held constant. Widespread screening programmes would be enhanced by follow-up interventions targeting higher-risk individuals, because screening shortens the expected duration of infectiousness and causes a greater relative decrease in prevalence among lower-activity than in higher-activity individuals. Even for pathogens with longer durations of infectiousness, our findings suggest that targeting vaccination and behavioural interventions towards high-activity individuals provides comparable benefits to population-wide interventions.  相似文献   

19.
In this communication we demonstrate, in a group of modern proteins, following an algorithm described by Argyle (1980), that the ordination of the amino acids in terms of the most frequent substitutions agrees with the conservation of the-helix,-sheet, and-turn formation tendencies during evolution. The same correspondence has been demonstrated for the conservation of the physico-chemical properties in the amino acid substitutions. Both parameters are similar in showing higher correlation with the most frequent amino acid substitutions than with the feasibility of changes at the level of the respective codons.Some kind of restrictions for the expression of the genomic changes, due to the conservation of the secondary structure of proteins and/or the physicochemical properties of the substituted amino acids, could account for the differences found between the distribution of the amino acid substitutions and the most probable codon changes.This work has been partially supported by Departamento de Investigación y Bibliotecas, Universidad de Chile y Fondo Nacional de Investigación Científica y Tecnológica.  相似文献   

20.
Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号