首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Nakatsuka  S Hanada  T Fujii 《Teratology》1983,28(2):243-247
A previous study demonstrated that caffeine strongly potentiated the teratogenic action of mitomycin C in mice. In the present study the effect of methylxanthines including caffeine, theophylline, theobromine (theobromine sodium salicylate), paraxanthine, and 1-methylxanthine was compared in order to analyze the structure-activity relationship. Jcl:ICR mice were injected IP with 3 mg/kg of mitomycin C, immediately followed by SC injection of each methylxanthine on day 11 of gestation. The doses of methylxanthines were calculated so that the mice received 50 mg/kg of caffeine or the equimolecular amount of the other methylxanthines. Fetuses were examined for external malformations on day 18 of gestation. Mitomycin C at 3 mg/kg and the methylxanthines at the doses used were not teratogenic. Combined administration of caffeine or theophylline with mitomycin C produced more than 80% of malformed fetuses. Although less effective than caffeine or theophylline, paraxanthine also significantly increased the incidence of malformed fetuses. Theobromine and 1-methylxanthine were virtually ineffective. From these findings, it is suggested that the methyl group at N-1 position of the xanthines is important for the enhancement but the N-1 methylation alone is ineffective unless accompanied with the substitution of the methyl moiety at the other position(s).  相似文献   

2.
We investigated the regulatory effects of structural differences among methylxanthine derivatives on the elevation of body fat percentage in developmental-stage rats. Caffeine, theophylline and theobromine were used as the methylxanthines. High-fat diets (20% lard) containing each methylxanthine (0.025%) were administered to male Sprague-Dawley rats for 12 weeks, with the result that the body fat percentage was generally reduced in each methylxanthine-fed group. The abdominal adipose tissue weight in the caffeine group was also significantly lower than that in the control group, the serum cholesterol and triglyceride levels in the caffeine group also being significantly lower than the levels in the control group. The study results suggest that caffeine could contribute most to preventing arteriosclerotic diseases.  相似文献   

3.
The maximal rate of incorporation of 32P-phosphate, 14C-formate and 14C-thymidine in DNA was recorded on the 13th day of development in the rat embryos and that of 14C-formate and 32P-phosphate in RNA and nucleotides of the acid-soluble fraction on the 12th day. The maximal incorporation of 14C-formate was recorded later: on the 15-16th days. Chloridin inhibited the incorporation of 14C-formate in DNA at all developmental stages, irrespective of the sensitivity of embryos to its teratogenic effect. The period of the maximal rate of DNA synthesis coincides with that of highest teratogenic activity of the drug. A suggestion is put forward to the effect that quantitative differences in the intensity of DNA synthesis at different stages of organgenesis provide one of the main causes of differential sensitivity of embryos to the teratogenic effect of inhibitors of nucleic acid synthesis.  相似文献   

4.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

5.
The effects of cycloheximide and colchicine on cleavage and syntheses of DNA and proteins in cleaving embryos of the sea urchin, Hemicentrotus pulcherrimus , were examined. Cycloheximide caused delay of cell division with prolongation of the streak stage. Both inhibitors also caused delay in initiation of DNA synthesis. The decrease in the rate and prolongation of the period of DNA synthesis caused by these inhibitors varied with their concentrations and the time of administration. Initiation of DNA synthesis was delayed when cycloheximide was added to suspensions of embryos between the time after preceding DNA synthesis terminated and a definite time before the predicted time of initiation of the next synthesis of DNA, except at the stage of pronuclear fusion. However, when the inhibitor was added after initiation of the synthesis, the latter proceeded normally. Addition of 10 m m cycloheximide immediately after fertilization or 2 m m cycloheximide 60 min before fertilization also delayed DNA synthesis at the stage of pronuclear fusion, indicating that synthesis at this stage also required prior protein synthesis. Colchicine had less inhibitory effect on protein synthesis, but greatly delayed initiation of DNA synthesis and prolonged its duration. These facts suggest that a definite amount of a particular protein must be synthesized and accumulated in each synthetic cycle before initiation of DNA synthesis.  相似文献   

6.
Caffeine is a methylxanthine present in the coffee tree, tea plant, and other naturally occurring sources and is among the most commonly consumed drugs worldwide. Whereas the pharmacological action of caffeine has been studied extensively, relatively little is known concerning the molecular mechanism through which this substance is detected as a bitter compound. Unlike most tastants, which are detected through cell-surface G protein-coupled receptors, it has been proposed that caffeine and related methylxanthines activate taste-receptor cells through inhibition of a cyclic nucleotide phosphodiesterase (PDE) . Here, we show that the gustatory receptor Gr66a is expressed in the dendrites of Drosophila gustatory receptor neurons and is essential for the caffeine response. In a behavioral assay, the aversion to caffeine was specifically disrupted in flies missing Gr66a. Caffeine-induced action potentials were also eliminated, as was the response to theophylline, the methylxanthine in tea. The Gr66a mutant exhibited normal tastant-induced action potentials upon presentation of theobromine, a methylxanthine in cocoa. Given that theobromine and caffeine inhibit PDEs with equal potencies , these data further support the role of Gr66a rather than a PDE in mediating the caffeine response. Gr66a is the first gustatory receptor shown to be essential for caffeine-induced behavior and activity of gustatory receptor cells in vivo.  相似文献   

7.
CHO cells were treated in G1 stage of the cell cycle with chromosome-breaking agents that act in an S-dependent manner. The cells were challenged in G2 stage, before fixation, with various inhibitors of DNA synthesis or repair. Short-wave UV, mitomycin C, decarbomyl mitomycin and 4-nitroquinoline oxide (4NQO) were used as chromosome-breaking agents. The inhibitors of DNA repair or synthesis used were hydroxyurea, aphidicolin and caffeine. Permeabilization of cells followed by a treatment with Neurospora endonuclease (a treatment to convert DNA single-strand breaks into double-strand breaks) did not have any influence on the frequencies of chromatid aberrations induced by the chemicals used, whereas with the inhibitors the extent of potentiation varied depending on the mutagen and the inhibitor used.  相似文献   

8.
武鑫  李萌萌  邓骋  邓威威  张正竹 《广西植物》2016,36(12):1505-1510
咖啡碱和可可碱是茶叶生物碱的主要组分,且咖啡碱是茶叶重要的滋味物质,随着咖啡碱在食品和药物领域的应用愈发广泛,咖啡碱的生物合成成为新的研究热点.目前市场上的咖啡碱主要靠化学合成,为了探索其生物合成途径,该研究将咖啡黄嘌呤核苷甲基转移酶(coffee xanthosine methyltransferase,CaXMT)基因和茶树咖啡碱合成酶(tea caffeine synthase,TCS1)基因的4个突变体分别串联至同一大肠杆菌表达载体pMAL-c5X,诱导融合蛋白共表达,并进行SDS-PAGE凝胶电泳分析.结果表明:目的蛋白成功表达后,应用超声破碎法制备含有目的蛋白的粗酶液,添加底物黄嘌呤核苷(xanthosine,XR)和甲基供体S-腺苷甲硫氨酸(S-adenosyl-L-methionine,SAM)进行体外酶促反应,将反应产物进行高效液相色谱检测.检测结果显示,pMAL-CaXMT-TM2/3/4的体外酶促反应产物仅有可可碱生成,均未见咖啡碱生成.该研究结果为构建生物合成咖啡碱和可可碱的串联共表达载体奠定了基础,也为进一步研究生物合成咖啡碱和可可碱提供了新思路.  相似文献   

9.
The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.  相似文献   

10.
Caffeine and theobromine were identified and quantified in leaf epicuticular waxes of Ilex paraguariensis A. St.-Hil. (Aquifoliaceae). The total epicuticular leaf wax content was ca. 0.5% on average of dry leaf weight. Epicuticular caffeine and theobromine contents varied from 0.16 to 127.6 microg/mg and from 0 to 9.5 microg/mg of wax, respectively. For some selected samples, the intracellular methylxanthine concentration was also determined. A positive correlation was found between inner and epicuticular caffeine contents.  相似文献   

11.
Mitotic checkpoints restrain the onset of mitosis (M) when DNA is incompletely replicated or damaged. These checkpoints are conserved between the fission yeast Schizosaccharomyces pombe and mammals. In both types of organisms, the methylxanthine caffeine overrides the synthesis (S)-M checkpoint that couples mitosis to completion of DNA S phase. The molecular target of caffeine was sought in fission yeast. Caffeine prevented activation of Cds1 and phosphorylation of Chk1, two protein kinases that enforce the S-M checkpoint triggered by hydroxyurea. Caffeine did not inhibit these kinases in vitro but did inhibit Rad3, a kinase that regulates Cds1 and Chk1. In accordance with this finding, caffeine also overrode the G(2)-M DNA damage checkpoint that requires Rad3 function. Rad3 coprecipitated with Cds1 expressed at endogenous amounts, a finding that supports the hypothesis that Rad3 is involved in direct activation of Cds1.  相似文献   

12.
A comparison has been made, in Chinese hamster cells, of the ability of various methylated oxypurines to inhibit post-replication repair of DNA after UV irradiation and to potentiate UV-induced chromosome aberrations. DNA synthesized in UV-irradiated cells contains gaps, which are subsequently sealed by a process termed post-replication repair. In rodent cells this process is inhibited by caffeine and its analogues. This has been quantitated by measuring the molecular weight of the DNA synthesized in UV-irradiated cells during a 4-h pulse-labelling period in the presence or absence of inhibitors--the lower molecular weight the greater the inhibition. Eight methylated oxypurines were tested; caffeine and chlorocaffeine were always the most potent inhibitors, tetramethyluric acid was inactive, and the other five derivatives (methoxycaffeine, ethoxycaffeine, paraxanthine, theobromine and theophylline) had intermediate effects. Measurements of the potentiation of UV-induced chromosome aberrations showed that treatments with caffeine or chlorocaffeine again had the greatest effects, tetramethyluric acid and also theophylline had no potentiating activity, and methoxycaffeine was intermediate. This correlation between effects at the molecular and cytological levels is consistent with the hypothesis that the inhibition of post-replication repair by methylated oxypurines gives rise to the increased production of chromosome aberrations.  相似文献   

13.
During 3-hr treatment of the morulae of sea urchin with cAMP phosphodiesterase (PDE) inhibitors, which produce vegetalized larvae, incorporation of 3H-thymidine into DNA occurs at almost the same rate as in control embryos. DNase I digests the newly synthesized DNA in chromatin isolated from morulae treated with PDE-inhibitor (caffeine) faster than that isoloated from normal morulae whereas it dogests DNA isolated from chromatin in caffeine treated embryos at almost the same rate as that in normal embryos. Hydroxyurea, an inhibitor of nucleside diphosphate reductase, prevents the vegetalizing effect of PDE-inhibitor on the development of sea urchin embrys.  相似文献   

14.
Mevinolin is a fungal metabolite, and in the hydroxyacid form, mevinolinic acid, it is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase, an enzyme essential in cholesterol biosynthesis. Oral administration of 800 mg/kg/day of mevinolin to rats from days 6 through 17 of gestation produced fetal malformations of the vertebrae and ribs in 29% of the litters, and there was a treatment-related increase in the incidence of gastroschisis. Mevinolinic acid at 60 and 90 mg/kg/day also produced fetal malformations of the vertebrae and ribs, and these teratogenic manifestations were markedly suppressed by coadministration of the product of HMG-Co A reductase, mevalonic acid, at a dosage level of 500 mg/kg b.i.d. A diet supplemented with 0.5% or 1.0% cholesterol had no effect on the teratogenicity of mevinolinic acid. Teratology studies in rats with a dihydroxyheptanoic acid derivative of mevinolin, a compound 1/700 as potent as mevinolinic acid as an inhibitor of HMG-Co A reductase, and dihydromevinolinic acid, an inhibitor of this enzyme comparable in activity to mevinolinic acid, indicated that the teratogenicity of these compounds was related to their relative enzyme inhibitory activity. The dihydroxyheptanoic acid derivative was not teratogenic at doses as high as 150 mg/kg b.i.d.; in contrast, when dihydromevinolinic acid was administered at 50 and 100 mg/kg/day, its potency as a teratogenic agent was comparable to that of mevinolinic acid. These studies demonstrated that inhibitors of HMG-CoA reductase produced terata in rats and that the teratogenic effects could be antagonized by coadministration of the enzyme product, mevalonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Theobromine is mainly found in plant foods, such as tea; the primary source of theobromine is the seeds of the Theobroma cacao tree. Theobromine is an alkaloid belonging to the methylxanthine class of drugs, and it is similar to theophylline and caffeine. Theobromine is known for its efficacy and role in health and disorder prevention. We evaluated the effects of theobromine on macrophage function, including the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). Theobromine significantly stimulated the production of nitric oxide (NO) and prostaglandin E2 through immune responses, which relate to the increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, theobromine increased the production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 in macrophages. Additionally, theobromine induced the translocation and activity of NF-κB in a concentration-dependent manner. Consistent with these results, the phosphorylation level of MAPKs was increased in theobromine-stimulated macrophages. Collectively, these data revealed that theobromine acts as an immune response stimulator via the NF-κB and MAPKs signaling pathways. Thus, theobromine might have protective effects against inflammatory disorders.  相似文献   

17.
The frequencies of chromatid aberrations produced in roots of Vicia faba by clastogenic (chromosome-damaging) agents were strongly enhanced by exposing the root-tip cells to inhibitors of DNA synthesis during the G2 phase. Chromosome damage produced by both S-dependent (maleic hydrazide, methyl methanesulfonate, thio-TEPA) and S-independent (X-rays, streptonigrin) mechanisms was enhanced by the inhibitor treatments. The types of aberrations affected by the inhibitors were mainly chromatid gaps and breaks and isochromatid breaks of the non-union type. Most effective among the inhibitors tested were hydroxyurea (HU) and 5-fluorodeoxyuridine (FdUrd). Post-treatments with caffeine were effective in enhancing clastogen-induced chromosome damage when given during the S phase. All types of aberrations, exchanges as well as breaks, were enhanced by the post-treatments. When given during the G2 phase, caffeine enhanced only the frequency of chromatid aberrations produced by X-rays. The enhancement was slight and obtained only when the cells were irradiated in the G2 phase and immediately post-treated with caffeine. Clastogen-treated cultures of human lymphocytes responded to post-treatments with inhibitors of DNA synthesis in very much the same way as clastogen-treated root-tip cells of Vicia faba. Thus, the frequencies of chromatid gaps and breaks and isochromatid breaks of the non-union type were strongly enhanced by exposing clastogen-treated lymphocytes to inhibitors of DNA synthesis during the G2 phase. The efficiency of the inhibitors, however, varied considerably in the two materials. On the whole, the number of inhibitors capable of enhancing induced chromosome damage was much larger in lymphocytes than in bean root tips. Only HU was equally effective in both materials. The most striking difference between the two materials was found when caffeine was given as a post-treatment. Thus, in human lymphocytes the frequencies of chromatid aberrations induced by most clastogenic agents were strongly enhanced when caffeine was given during the G2 phase, but little affected by post-treatments with caffeine during the S phase.  相似文献   

18.
The regulation of nucleic acid and protein synthesis in dormant, thermodormant, and after-ripened embryos of Vaccaria pyramidata (Caryophyllaceae) has been studied. Germination of after-ripened V. pyramidata seeds is prevented by inhibitors of protein, RNA, and DNA synthesis. The synthesis of both protein and RNA is activated at the beginning of imbibition, whereas [3H]thymidine incorporation does not start until the second period of the imbibition phase. [3H]Thymidine incorporation is greatly reduced in embryos treated with cycloheximide or 6-methylpurine. There is no correlation between the level of [3H]uracil and l-[14C]leucine incorporation into macromolecules and the physiological state of the seeds: tRNA, ribosomal RNA, and poly(A)-containing RNA (probably mRNA) as well as proteins are synthesized at the same rate in both dormant and thermodormant embryos as in after-ripened embryos. The protein patterns of dormant and after-ripened embryos are similar, as shown by electrophoresis and electrofocusing of double-labeled proteins. The level of DNA synthesis, measured as [3H]thymidine incorporation, may, on the other hand, indicate the physiological activity of the seeds: [3H]Thymidine is incorporated at a high rate in after-ripened embryos only and remains at a low level in dormant or thermodormant embryos. This correlation is, however, observed only in the axes. DNA synthesis in the cotyledons does not show any relation to the developmental stage of the seeds. These results are discussed in relation to the regulation of dormancy and after-ripening of seeds.  相似文献   

19.
The object of this work was to study how the synthesis of protein, RNA and DNA in Escherichia coli M17 and its viability were influenced by chloramphenicol (50 and 300 micrograms/ml) an inhibitor of protein biosynthesis, and sodium azide (200 and 2000 microM) and aminazine (50 micrograms/ml), inhibitors of respiration. The exposed were inhibitors with the bacteria for 60 min at room temperature and for 1-4 months at -10 degrees C. The inhibition of the E. coli viability by chloramphenicol was shown to be reversible. The respiration inhibitors stabilized its viability upon storage at -10 degrees C for one month. The inhibitors were found to produce a different effect on the synthesis of RNA and protein in E. coli. The rates of DNA synthesis hardly changed. No correlation was established between changes in the synthesis of protein and nucleic acids by E. coli after the action of the inhibitors and its viability.  相似文献   

20.
D A Walsh  V B Morris 《Teratology》1989,40(6):583-592
The effects of heat shock on cell cycling in the mammalian neuroectoderm were determined by applying heat shocks to cultured rat embryos at the neural plate stage, as part of a study on the teratogenic effects of heat shock on neural development. The heat shocks had been characterized previously (Walsh et al.: Teratology 36:181-191, 1987) with respect to their effects on the gross morphological development of the rat embryos. The effects on cell cycling were observed in DNA histograms of neural plate cells recorded in a flow cytometer after staining with DAPI. The mild heat shock (42 degrees C for 10 min) arrested cells at entry to S phase. The teratogenic heat shock (43 degrees C for 7.5 min) arrested cells at entry to S phase also but for a longer time and inhibited cycling through S phase. After each arrest, a synchronized peak of cells later entered S phase and progressed through the cycle. The induced-thermotolerance heat shock, which was the mild heat shock followed after an interval by the teratogenic heat shock, showed that pre-treatment with the mild heat shock reduced the magnitude of the response to the teratogenic heat shock. The cell-cycle inhibitor ICRF 159 showed the effects on cycling rates of the heat-shock treatments. The arrest of cells at entry to S phase by heat shock may function to prevent cells entering DNA synthesis under non-optimal conditions. We report estimates of proportions of non-proliferative cells in the neural plate of the rat embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号