首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with a phosphatidate containing short-chain fatty acids, 1,2-didecanoyl-3-sn-phosphatidate (PA10), induced substantial superoxide anion (O2-) production in a dose-dependent manner, whereas phosphatidates prepared from egg lecithin and 1,2-dioleoyl-3-sn-phosphatidate (PA18:1) had no such effect. Calcium was not involved in PA10-induced O2- production, since the production was also observed in the case of addition of EGTA prior to PA10 or pretreatment of PMNL with quin-2 and EGTA to eliminate contributions of both extracellular and intracellular calcium. We have reported in previous papers that the phosphorylation of 46K protein(s), which was commonly observed in parallel with an activation of NADPH oxidase in PMNL, was increased by treatment with 10 microM 1-oleoyl-2-acetylglycerol (OAG) with little change in the O2- production (Okamura et al. (1984) Arch. Biochem. Biophys. 228, 270-277; Ohtsuka et al. (1988) Arch. Biochem. Biophys. 260, 226-231). Treatment of PMNL with a combination of PA10, which slightly increased 46K protein phosphorylation, and such a low concentration of OAG induced a marked increase in the O2- production with the increase in 46K protein phosphorylation, which was probably due to OAG action. Thus, it is likely that this protein phosphorylation plays a significant role in the stimulation of the O2- production by phosphatidate in PMNL.  相似文献   

2.
The phosphorylation of 46K protein(s), which was generally observed in parallel with an activation of NADPH oxidase of guinea pig polymorphonuclear leukocytes (PMNL) in our previous studies (N. Okamura et al. (1984) Arch. Biochem. Biophys. 228, 270-277; T. Ohtsuka et al. (1987) J. Biochem. 101, 897-903), was increased by treatment with 1-oleoyl-2-acetylglycerol (OAG), even at low concentrations at which both superoxide anion (O2-) production and arachidonate release were little induced. On the other hand, exposure of PMNL to low concentrations of a calcium ionophore, A23187, stimulated arachidonate release without causing substantial O2- production and increase in phosphorylation of 46K protein(s). Simultaneous addition of the above-mentioned suboptimal concentrations of both OAG and A23187 markedly enhanced O2- production in PMNL. This enhancing effect may be ascribable to the increase in the phosphorylation of 46K protein(s) and arachidonate release, which are induced by the addition of OAG and A23187, respectively. Another arachidonate-releasing agent, N-formyl-methionylleucyl-phenylalanine (FMLP), also stimulated O2- production in accordance with an increase in the arachidonate release and protein phosphorylation. Simultaneous addition of OAG significantly enhanced the FMLP-induced O2- production, presumably by maintaining the 46K protein phosphorylation which would facilitate the effect of arachidonate released by FMLP. Thus, the present results suggest that phosphorylation of 46K protein(s) and arachidonate release synergistically induce O2- production in PMNL, although either of them alone hardly induces the production.  相似文献   

3.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with various fatty acids elicited superoxide anion (O2-) production and an increase in intracellular Ca2+ [( Ca2+]i). Both responses, however, were seldom observed when PMNL were treated at lower concentrations. But, simultaneous addition of 1-oleoyl-2-acetylglycerol (OAG), a protein kinase C activator, caused an increase in O2- production even at the lower concentrations of fatty acids. In contrast to the synergism in O2- production, [Ca2+]i remained at almost the basal level irrespective of the presence of OAG. Among saturated fatty acids, those with carbon numbers of 14 to 18 were most effective in stimulating O2- production in combination with OAG. Unsaturated fatty acids with a carbon number of 18 were almost equally effective irrespective of the number of double bonds.  相似文献   

4.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

5.
Superoxide anion (O2-) production stimulated by concanavalin A (Con A) in guinea pig polymorphonuclear leukocytes (PMNL) was suppressed by addition of methyl-alpha-mannoside, a Con A inhibitor, and resumed upon readdition of Con A. The reversible change in the O2- production was assumed to reflect the change in NADPH oxidase activity measured for the 30,000 X g particulate fraction. The stimulation by Con A of the phosphorylation of 46K protein(s), as observed previously with several membrane-perturbing agents in parallel with an activation of NADPH oxidase in intact guinea pig PMNL (Okamura, N., et al. (1984) Arch. Biochem. Biophys. 228, 270-277), was also suppressed by methyl-alpha-mannoside and resumed upon readdition of Con A. Similar parallelism between the phosphorylation and NADPH oxidase activity was also observed in the case of stimulation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and phorbol 12-myristate 13-acetate (PMA), though both processes were reversible after the stimulation by FMLP but not reversible after that by PMA. Thus, such a parallelism observed in both intact PMNL and 30,000 X g particulate fraction indicates possible involvement of the protein phosphorylation in the regulation of the production of active oxygen metabolites in PMNL.  相似文献   

6.
A diacylglycerol (DG) kinase inhibitor, R 59 022, potentiated superoxide anion (O2-) production in guinea pig polymorphonuclear leukocytes (PMNL) induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP). R 59 022 also potentiated O2- production induced by 1-oleoyl-2-acetylglycerol, a permeable DG. However, the production induced by phorbol 12-myristate 13-acetate (PMA), a direct activator for protein kinase C, was not potentiated by R 59 022. R 59 022 by itself had no significant effects on unstimulated O2- production. The potentiation of FMLP-induced O2- production by R 59 022 was correlated closely with increased formation of DG and decreased formation of phosphatidic acid, a product of DG kinase. R 59 022 had no effect on the breakdown of phosphoinositides. Phosphorylation of 46-kDa protein(s) by protein kinase C was also examined in relation to O2- production in PMNL. In coincidence with the increase in O2- production, the phosphorylation was potentiated by R 59 022 in the response to FMLP, but not in the response to PMA. In addition, staurosporine, a protein kinase C inhibitor, inhibited increases in both O2- production and phosphorylation of the 46-kDa protein(s) after PMA stimulation. Similar inhibitory effects of staurosporine were also observed upon stimulation with FMLP, irrespective of the presence of R 59 022. These results indicate that retention of DG as a result of the inhibition of further metabolism induces marked stimulation of O2- production via protein kinase C activation in PMNL. These results also provide further evidence for the close relationship between 46-kDa protein phosphorylation by protein kinase C and stimulation of O2- production in PMNL.  相似文献   

7.
A major function of human neutrophils (PMN) during inflammation is formation of oxygen radicals through activation of the respiratory burst enzyme, NADPH oxidase. Stimulus-induced production of both phosphatidic acid (PA) and diglyceride (DG) has been suggested to mediate oxidase activity; however, transductional mechanisms and cofactor requirements necessary for activation are poorly defined. We have utilized PMN permeabilized with Staphylococcus aureus alpha-toxin to elucidate the signal pathway involved in eliciting oxidase activity and to investigate whether PA or DG act as second messengers. PMN were permeabilized in cytoplasmic buffer supplemented with ATP and EGTA for 15 min before addition of NADPH and various cofactors. Oxidase activation was assessed by superoxide dismutase inhibitable reduction of ferricytochrome C; PA and DG levels were measured by radiolabeled product formation or by metabolite mass formation. Both superoxide (O2-) and PA formation were initiated by 10 microM GTP gamma S; addition of cytosolic levels of calcium ions (Ca2+, 120 nM) enhanced O2- and PA formation 1.5-2 fold. DG levels showed little change during these treatments. PA formation preceded O2- production and varying GTP gamma S levels had parallel effects on O2- and PA formation. However, while PA formation and oxidase activation occurred in tandem at Ca2+ levels of < 1 microM, higher calcium enhanced PA formation but inhibited O2- production. Removal of ATP completely blocked O2- production but had little effect on PA formation; in contrast, if ATP was replaced with ATP gamma S, parallel production of PA and O2- occurred in the absence of other cofactors. Finally, while inhibition of PA production by ethanol pretreatment led to inhibition of O2- formation in PMN treated with GTP gamma S alone, in cells stimulated with a combination of GTP gamma S and Ca2+, ethanol continued to inhibit PA formation but had no effect on O2- production. Our results do not support a role for DG in the signal transduction path leading to oxidase activation and, while we show a close correlation between oxidase activation and PA production under many physiologic conditions, we also demonstrate that PA is not sufficient to induce oxidase activation and O2- formation can occur when PA production is inhibited.  相似文献   

8.
The NADPH-dependent superoxide production induced by sodium dodecyl sulfate (SDS) in the sonicates of unstimulated pig neutrophils required both membrane fraction and two components of cytosol fraction. The potency of the cytosol fraction in the activation of the superoxide production could be reconstituted dose dependently by mixing two protein components with relative molecular masses of 300 kDa and 50 kDa. Another low-molecular-mass component (1.3 kDa) could substitute the 50-kDa component. In the cell-free system consisting of the 300- and 50-kDa components and the membrane fraction, the superoxide production was markedly enhanced by FAD with a required concentration for half-maximal effect of 0.16 microM and inhibited by divalent cations such as Ca2+, Ba2+, Co2+, Zn2+ and Mn2+ and not Mg2+. ATP was not necessary for the activation, indicating that protein kinases such as protein kinase C are not involved in the SDS-dependent activation of NADPH oxidase. The NADPH oxidase activated by SDS in the cell-free system was recovered in the membrane fraction, and the superoxide formation by the SDS-activated membrane exhibited a Km value for NADPH of 46 microM and optimum pH at 7.0. The formation did not require the addition of SDS and FAD to the reaction mixture and was scarcely inhibited by the divalent cations.  相似文献   

9.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with phorbol 12-myristate 13-acetate (PMA) induced an increase in phosphorylation of 46 kDa protein(s) in parallel with activation of NADPH oxidase. In response to PMA stimulation, phosphorylated 46 kDa protein(s) increased markedly in the membrane fraction, accompanied by a decrease in the unphosphorylated form(s) in the cytosol. The results indicate that the 46 kDa protein(s) may be translocated concomitantly with its phosphorylation. On the other hand, in a cell-free activation system reconstituted from the cytosol and plasma membranes of unstimulated PMNL, arachidonic acid caused the translocation of the 46 kDa protein(s) from the cytosol to the plasma membranes concomitantly with an enhancement of NADPH oxidase activity. These results suggest that activation of NADPH oxidase is dependent on an association of 46 kDa protein(s) with the membranes both in intact PMNL and in the cell-free system.  相似文献   

10.
NADPH oxidase activity in a membrane fraction prepared from phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig polymorphonuclear leukocytes (PMNL) was inhibited by positively charged myristylamine. The inhibitory effect of myristylamine was significantly suppressed by simultaneous addition of a negatively charged fatty acid, such as myristic acid. However, the suppression by myristylamine was not sufficiently restored when myristic acid was added later. On the other hand, pretreatment of PMA-stimulated PMNL with glutaraldehyde, a protein crosslinking reagent, stabilized NADPH oxidase activity against inhibition by myristylamine, but not against that by p-chloromercuribenzenesulfonic acid. In a cell-free system of reconstituted plasma membrane and cytosolic fractions prepared from unstimulated PMNL, arachidonic acid-stimulated NADPH oxidase activity was also inhibited by myristylamine. During the activation of NADPH oxidase by PMA in intact PMNL and by arachidonic acid in the cell-free system, cytosolic activation factor(s) translocated to plasma membranes. The bound cytosolic activation factor(s) was released from the membranes by myristylamine, accompanied by a loss of NADPH oxidase activity. It is plausible from these results that the inhibitory effect of alkylamine on NADPH oxidase is due to induction of the decoupling and/or dissociation of the cytosolic activation component(s) from the activated NADPH oxidase complex by increments of positive charges in the membranes, and that the glutaraldehyde treatment prevents the dissociation of component(s).  相似文献   

11.
Electropermeabilization creates small pores in the plasma membrane allowing the introduction of low-molecular-weight modulatory components, such as ions and nucleotides, into the cytosol. The present study investigates fluoride-mediated stimulation of the signal transduction pathway that activates the respiratory burst in electropermeabilized neutrophils. In marked contrast to intact (i.e., non-electropermeabilized) neutrophils, cells permeabilized by this technique demonstrated an immediate and potent stimulation of the superoxide (O2-)-generating NADPH oxidase in response to the addition of fluoride. Furthermore, permeabilization of neutrophils in the presence of exogenously added ATP enhanced the rate of F(-)-mediated O2- production. Fluoride-stimulated O2- production in electropermeabilized neutrophils was antagonized by GDP beta S and dependent upon the presence of Mg2+ in the medium, but was insensitive to pertussis toxin treatment, consistent with the hypothesis that fluoride activates a G protein, probably Gp, by interacting with the nucleotide-binding site on the G alpha subunit. In addition, electropermeabilized neutrophil O2- release triggered by F- was blocked by staurosporine and H-7, indicating that this pathway proceeds largely through protein kinase C activation. However, nucleotide-enhanced O2- production was only partially blocked by these inhibitors, suggesting that under such conditions ATP either competes with the inhibitor-protein kinase interaction or affects the signaling pathway(s) in such a way that protein kinase C may no longer be necessary for the activation of NADPH oxidase.  相似文献   

12.
The superoxide (O2-) forming NADPH oxidase complex of resting phagocytes can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). For O2- production to occur, the participation of both membrane-associated and cytosol-derived components is required. The purpose of this investigation was to isolate and characterize the membrane component of NADPH oxidase. For this purpose, guinea pig macrophage membranes were extracted with 1 M NaCl, solubilized by 40 mM octyl glucoside, and subjected to a purification sequence consisting of absorption with DEAE-Sepharose, affinity chromatography on heparin-agarose, and chromatography on hydroxylapatite. At each purification step, fractions were assayed for their ability to support SDS-elicited, cytosol-dependent O2- production, following incorporation in liposomes of phosphatidylcholine. We found that membrane oxidase activity copurified strictly with cytochrome b559. Peak hydroxylapatite fractions exhibited specific O2(-)-forming activity in the range of 81-115 mumol of O2-/mg protein/min and a specific cytochrome b559 content of 7-14 nmol of cytochrome b559/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the peak oxidase activity fractions, derived by hydroxylapatite chromatography, revealed essentially two bands that were identified as the beta (54-60 kDa) and alpha (21/22 kDa) subunits of guinea pig cytochrome b559. The relation of the two polypeptides to cytochrome b559 was established by correlation with a spectral signal characteristic of cytochrome b559, immunoblotting with antibodies against defined human cytochrome b559 beta and alpha chain peptides, cross-linking studies, and deglycosylation experiments. Hydroxylapatite-purified membrane oxidase preparations did not contain FAD and were free of cytochrome c reductase activity. Purified membrane oxidase preparations were also capable of cooperating with purified cytosolic components in SDS-elicited cell-free O2- production. We conclude that the membrane-associated component of the O2- generating NADPH oxidase is identical to cytochrome b559.  相似文献   

13.
Cytochalasin D (CD) induced production of the superoxide radical (O(2)(-)) in guinea pig polymorphonuclear leukocytes (PMNs). The protein kinase C (PKC) inhibitor GF109203X (GFX) was rarely without effect on CD-induced O(2)(-) production. CD as well as PMA induced the translocation of p47(phox) to the membrane fraction, and this translocation was slightly decreased by GFX. Moreover, the inhibitory effect of a PKCzeta antagonist with sequences based on the endogenous PKCzeta pseudosubstrate region was weaker than the inhibitory effect on N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced O(2)(-) production. On the other hand, the production of O(2)(-) induced by CD was more strongly suppressed by the PLD inhibitor ethanol and phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin than that induced by fMLP, and the activation of phospholipase D (PLD) by CD was restrained by wortmannin. These findings suggest that NADPH oxidase is activated by CD through a PKC-independent signaling pathway in PMNs, and this pathway involves the activation of PLD through PI3-K.  相似文献   

14.
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.  相似文献   

15.
Phosphatidic acid (PA), a molecule that is rapidly produced by the stimulated turnover of phospholipids in a variety of cells including blood neutrophils, elicited NADPH-dependent superoxide anion (O2-) production in detergent extracts from membranes of resting pig neutrophils. The stimulatory effect of PA was independent of cytosolic factors, differing from arachidonic acid and sodium dodecyl sulfate which, on the contrary, absolutely required the presence of cytosol to elicit the same result. The O2(-)-forming activity of the detergent extract activable by PA, as that by sodium dodecyl sulfate and arachidonic acid plus cytosol, was found in the chromatographic fractions containing cytochrome b558 and presented a chromatographic profile identical to that of the activated NADPH oxidase, which was obtained from neutrophils prestimulated with phorbol 12-myristate 13-acetate. The PA-induced NADPH-dependent O2(-)-forming activity showed kinetic properties and sensitivity to the inhibitors similar to the classical ones of the activated neutrophil NADPH oxidase. The data suggest that, in this cell-free system, PA may stimulate O2- formation by direct interaction with latent NADPH oxidase of neutrophils or with some of its regulatory components.  相似文献   

16.
Formyl-methionyl-leucyl-phenylalanine (fMLP) and 1-oleoyl-2-acetyl-glycerol (OAG) are synergistic stimuli of the respiratory burst of neutrophils. Simultaneous exposure to both agents greatly enhanced superoxide production, both in rate and extent. OAG potentiated the response to fMLP also in Ca++ -free medium. Pretreatment of the neutrophils with fMLP drastically shortened the lag of superoxide production in response to OAG. Our findings lead to the following conclusions: (i) Protein kinase C is likely to be involved in the activation of the NADPH oxidase by fMLP; (ii) OAG appears to be utilized as an intermediate in the activation process; (iii) prestimulation of the cells with fMLP facilitates the response to OAG.  相似文献   

17.
Fluoride-mediated activation of guinea pig neutrophils   总被引:1,自引:0,他引:1  
In guinea pig peritoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

18.
In guinea pig periotoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

19.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

20.
Partial purification of the cytosolic factors which are required for the activation of O2- producing enzyme (NADPH oxidase) was performed using guinea pig neutrophils. Three active cytosolic factors were obtained by using the combination of IEC-SP (cation-exchange) and IEC-QA (anion-exchange) HPLC. One factor (termed SP-1e which was adsorbed on IEC-SP column, somewhat activated the NADPH oxidase by itself. The molecular weight of SP-1 was estimated to be approximately 260 kDa. In contrast, the other two factors (termed QA-1 and QA-2, respectively), which were adsorbed on IEC-QA column, did not activate the NADPH oxidase by themselves but activated the enzyme only in the presence of SP-1. When three factors were combined, they activated the oxidase synergistically, and the activity recovered was almost the same as that observed with the unfractionated cytosol. These results suggest that at least three different cytosolic factors are required for the full activation of NADPH oxidase in guinea pig neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号