首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fenech M 《Mutation research》2012,733(1-2):21-33
Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300pmol/L and plasma homocysteine is less than 7.5μmol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400μg/day) and vitamin B12 (i.e. >2μg/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences.  相似文献   

2.
The relationship between vitamin B12 and folate and the effect of methionine on folate metabolism during B12 deficiency in rats is best explained by the prevention of the accumulation of 5-methyl-H4PteGlu by vitamin B12 and/or methionine. Although several points remain to be clarified, the 'methyl trap' hypothesis provides the most satisfactory explanation for the relation between vitamin B12, methionine and folic acid. This concept is extended by the hypothesis that H4PteGlu is the most active substrate for pteroylpolyglutamate synthetase, and thus accounts for the effect of methionine or vitamin B12 increasing liver folate levels.  相似文献   

3.

Objective

To assess the status of the vitamin B12 and folate of Chinese women living in northwest China.

Methods

A population-based cross-sectional study was conducted in 2008 among Chinese women aged 10–49 years living in Shaanxi province of northwest China. A stratified multistage random sampling method was adopted to obtain a sample of 1170 women. The women were interviewed for collection of their background information and their plasma vitamin B12 and folate were measured with the immunoassay method. The status of both vitamins was evaluated and the prevalence of deficiency was estimated.

Results

The median value of the women was 214.5 pg/mL for vitamin B12 and 4.6 ng/mL for folate. The urban women had a significantly higher vitamin B12 (254.1 vs. 195.9 pg/mL) but lower folate (4.4 vs. 4.7 ng/mL) than rural women. Total prevalence of deficiency was 45.5% (95% CI: 42.6%∼48.4%) for vitamin B12 and 14.7% (95% CI: 12.6%∼16.8%) for folate. About 36% of women presented vitamin B12 deficiency alone, 5.2% belonged to folate deficiency alone and 9.5% was combined deficiency in both vitamins. More than 25% of the women were in marginal vitamin B12 status (200–299 pg/mL) and 60% in marginal status of folate (3–6 ng/mL). About 75.2% of rural women with folate deficiency were deficient in vitamin B12 and 46% for urban women. Quantile regression model found decreasing coefficient of folate status across 73 different quantiles of vitamin B12, which indicated that the women with folate deficiency had lower vitamin B12 significantly compared with those with no deficiency.

Conclusions

The deficiency of vitamin B12 and folate is still prevalent among the Chinese women in northwest China. Vitamin B12 deficiency could be more serious and the improvement of poor vitamin B12 status should be invoked when practicing the supplementation of folate against the neural tube defects in northwest China.  相似文献   

4.
Graded levels of aflatoxin fed to broiler chickens for 3 weeks decreased the levels of most B vitamins in plasma, bile, and liver and decreased all free and hydrolyzed amino acids from peptides in plasma. The levels of thiamine, riboflavin, vitamin B6, pantothenic acid, and choline decreased by more than 60% in bile; vitamin B6, pantothenic acid, and choline decreased by more than 49% in plasma; thiamine, vitamin B6, pantothenic acid, choline, folate, and niacin decreased by more than 19% in liver; and only bile and plasma levels of folate increased (78 and 12%, respectively) with a dietary level of 5 microgram of aflatoxin per g of feed. Plasma levels of cystine and cysteine, methionine, threonine, serine, and aspartic acid decreased by more than 37%, whereas valine, lysine, leucine, histidine, hydroxyproline, and alanine decreased by more than 9% with 2.5 microgram of aflatoxin per g of feed. The data suggest that aflatoxin interferes with the metabolism of B vitamins and amino acids in chicks. However, these changes may be measuring the effects of aflatoxin-induced hepatic necrosis.  相似文献   

5.
6.
An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer''s disease (AD) and Parkinson''s disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.  相似文献   

7.
Changes in the folate and vitamin B12 status in the body influence the extent of uracil misincorporation (UrMis) into DNA, which is one of the biomarkers of genomic stability and, thus, portends a risk of cancer. In our study, the level of UrMis into DNA was evaluated by the comet assay (using the specific DNA repair enzyme, uracil DNA glycosylase) in leukocytes from blood donated by healthy young women with positive folate balance achieved by 4 weeks of folic acid supplementation (400 microg/day). The nutritional status was evaluated on the basis of nine food diaries recorded by the subjects during two winter months. The data were computerized, and the intake of nutrients and micronutrients was estimated using the DIETA 2 program (Food and Nutrition Institute, Warsaw, Poland) linked to recently updated Polish food tables. The plasma folate and vitamin B12 concentration, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms, were evaluated to determine their influence on the level of UrMis into DNA. The mean value of B12 intake for all subjects reached 100% of the Polish recommended dietary allowances (RDA), whereas the mean value of folate intake, before folate supplementation, was 50%, suggesting moderate deficiency. Folic acid supplementation brought the folate intake way above the RDA, and plasma folate concentration in each individual was above the deficient range (mean value 14.67 ng/ml). The UrMis did not correlate with the plasma folate concentration, but the level of UrMis was significantly lower in subjects with plasma vitamin B12 concentration above 400 pg/ml (P=.02) only after folic acid supplementation. The concentration of folate in plasma correlated (P相似文献   

8.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), and of methionine on folate coenzyme metabolism were determined in rat liver, kidney, brain, small intestine and bone marrow cells. Nitrous oxide exposure led to an increase in the proportion of 5-methyltetrahydrofolate at the expense of other reduced folates in all tissues examined. Administration of methionine at levels up to 400 mg/kg resulted in the normalization of folate coenzyme patterns in liver as a result of the increased levels of S-adenosylmethionine. In other tissues examined, methionine had no effect on the levels of S-adenosylmethionine or S-adenosylhomocysteine, or on the distribution of folate coenzymes. These results are consistent with the methyl trap hypothesis as the explanation of the relationship between vitamin B12 and folate metabolism, and provide direct evidence that the sparing effect of methionine on folate metabolism is a phenomenon restricted to the liver.  相似文献   

9.
Both taking folic acid-containing vitamins around conception and consuming food fortified with folic acid have been reported to reduce omphalocele rates. Genetic factors are etiologically important in omphalocele as well; our pilot study showed a relationship with the folate metabolic enzyme gene methylenetetrahydrofolate reductase (MTHFR). We studied 169 non-aneuploid omphalocele cases and 761 unaffected, matched controls from all New York State births occurring between 1998 and 2005 to look for associations with single nucleotide polymorphisms (SNPs) known to be important in folate, vitamin B12, or choline metabolism. In the total study population, variants in the transcobalamin receptor gene (TCblR), rs2232775 (p.Q8R), and the MTHFR gene, rs1801131 (c.1298A>C), were significantly associated with omphalocele. In African-Americans, significant associations were found with SNPs in genes for the vitamin B12 transporter (TCN2) and the vitamin B12 receptor (TCblR). A SNP in the homocysteine-related gene, betaine-homocysteine S-methyltransferase (BHMT), rs3733890 (p.R239Q), was significantly associated with omphalocele in both African-Americans and Asians. Only the TCblR association in the total population remained statistically significant if Bonferroni correction was applied. The finding that transcobalamin receptor (TCblR) and transporter (TCN2) SNPs and a BHMT SNP were associated with omphalocele suggests that disruption of methylation reactions, in which folate, vitamin B12, and homocysteine play critical parts, may be a risk factor for omphalocele. Our data, if confirmed, suggest that supplements containing both folic acid and vitamin B12 may be beneficial in preventing omphaloceles.  相似文献   

10.
In the mouse cell-lines cultured in vitro, viz. L-cells and mouse embryo fibroblasts, the methylation of homocysteine to methionine is carried out by vitamin B12-dependent 5-methyltetrahydrofolate:L-homocysteine methyltransferase only. In these cells grown in the standard Eagle medium, the activity of another methyltransferase, which utilizes betaine as the methyl donor, was not detected. The high activity of the vitamin B12-dependent methionine synthetase is typical for mouse cells from the logarithmic phase of growth. In L-cells 60%, and in the mouse fibroblasts 30% of the enzyme exist in the holo-form; the ratio between the holo- and apoenzyme activity remains stable in cells from logarithmic and stationary cultures. The level of the activity of methionine synthetase strongly depends on the presence of vitamin B12, folate and methionine in the culture medium and is greater after prolonged contact of the cells with these agents.  相似文献   

11.
1. The effects of injected l-methionine (2g every second day for 28 days) on liver folates and other constituents of liver associated with folate metabolism were studied in vitamin B(12)-deficient ewes and their pair-fed controls receiving vitamin B(12). The dose rate of methionine used was sufficient to restore almost to normal the elevated excretion in the urine of formiminoglutamate in the deficient animals. 2. Liver folates active for Lactobacillus casei, Streptococcus faecalis R and Pediococcus cerevisiae were severely depressed in deficient livers and were partly restored by methionine. Analysis of the folates after ion-exchange chromatography showed that the major effect of methionine was to increase the concentrations of tetrahydrofolates and formyltetrahydrofolates. Methyltetrahydrofolates were also increased, but there was no effect of methionine on the small amounts of incompletely reduced folates present in deficient livers. The folates present were predominantly penta-, hexa- and hepta-glutamates whether or not animals received vitamin B(12) or methionine. 3. Concentrations of ATP, NAD(+), NADH and NADPH were lower in freeze-clamped liver from vitamin B(12)-deficient sheep than in liver from pair-fed, vitamin B(12)-treated sheep. These changes were not affected by methionine which was also without effect on the elevated K(+)/Na(+) ratios found in deficient livers. 4. The livers of vitamin B(12)-deficient animals contained lower concentrations of choline and higher concentrations of lipid than their pair-fed controls. These effects were reversed by methionine.  相似文献   

12.
BackgroundResearch to date suggests that nickel affects not only the metabolism of vitamin B12 but also folates and thus may affect hematopoiesis processes.ObjectiveThe aim of the study was to examine the relationship of nickel (Ni) status to red blood cell (RBC) parameters and serum vitamin B12, folate and homocysteine concentrations in the course of normal pregnancy and in pregnant women with anemia.MethodsThe study included fifty-three pregnant women recruited to the study from the Lower Silesia region of Poland, 17 % of whom developed anemia. Nickel concentration was determined in urine, whole blood and food samples by atomic absorption spectrometry. At the same time as the food and urine samples were taken, blood was also collected for the determination of RBC parameters and serum vitamin B12, homocysteine and folate concentrations.ResultsThe median reported Ni intake, and the urinary and whole blood nickel contents for the studied pregnant women for the first trimester were respectively – 162.46 μg/day, 3.98 μg/L and 3.32 μg/L; for the second trimester – 110.48 μg/day, 6.86 μg/L and 1.04 μg/L; and for the third trimester – 132.20 μg/day, 3.41 μg/L and 0.70 μg/L. With regard to Ni concentration in whole blood (p = 0.0204) and in urine (p = 0.0003), the differences in the values for individual trimesters were statistically significant. The whole blood Ni level was significantly higher (9.28 vs 3.62 μg/L, p = 0.0114), while the concentration of homosysteine was significantly lower (4.09 vs 5.04 μmol/L, p = 0.0165) in pregnant women with anemia compared to those without anemia. The whole blood Ni concentration was negatively correlated with almost all RBC parameters in non-anemic pregnant women.ConclusionsNi status changes with the development of normal pregnancy, and in the case of anemia, an increase in Ni concentration in whole blood is observed. The demonstrated correlations between the Ni status in pregnant women and RBC parameters as well as serum vitamin B12 and folate concentrations suggest that nickel is associated with the methionine–folate cycle, iron homeostasis and bacterial synthesis of vitamin B12 in humans.  相似文献   

13.
Folates are carriers of one-carbon units and are metabolized by 5,10-methylenetetrahydrofolate reductase (MTHFR) and other enzymes that use riboflavin, cobalamin, or vitamin B6 as cofactors. These B vitamins are essential for the remethylation and transsulfuration of homocysteine, which is an important intermediate in one-carbon metabolism. We studied the MTHFR 677C-->T polymorphism and B vitamins as modulators of one-carbon metabolism in 10,601 adults from the Norwegian Colorectal Cancer Prevention (NORCCAP) cohort, using plasma total homocysteine (tHcy) as the main outcome measure. Mean concentrations of plasma tHcy were 10.4 micromol/liter, 10.9 micromol/liter, and 13.3 micromol/liter in subjects with the CC (51%), CT (41%), and TT (8%) genotypes, respectively. The MTHFR 677C-->T polymorphism, folate, riboflavin, cobalamin, and vitamin B6 were independent predictors of tHcy in multivariate models (P<.001), and genotype effects were strongest when B vitamins were low (P相似文献   

14.
Methylenetetrahydrofolate reductase (MTHFR) is important for folate and homocysteine (Hcy) metabolism. MTHFR 677C‐>T and 1298A‐>C MTHFR are two most common mutations which can affect folate and total homocysteine (tHcy) status. This study was designed to determine the rate of MTHFR 677C‐>T and 1298A‐>C mutations, and their influence on serum folate, Hcy and vitamin B12 status and the reference intervals in 402 healthy Turkish adults. The rate of MTHFR 677C‐>T or 1298A‐>C mutations was 50.7% or 54.7%, respectively. The MTHFR 677C‐>T mutation‐specific reference intervals for serum folate and tHcy were characterized by marked shifts in their upper limits. In homozygote subjects for MTHFR 677C‐>T serum folate concentration was lower and serum tHcy concentration was higher than those in the wild genotype; all subjects had lower serum folate and 54% of the subjects had higher tHcy concentrations than the cutoff values of ≤10 nmol/L and ≥12 µmol/L, respectively. Serum vitamin B12 status was similar in all genotypes. Serum tHcy concentrations were inversely correlated with serum folate and vitamin B12 concentrations in all genotypes. These data show that the rate of MTHFR 677C‐>T and 1298A‐>C mutations is very high in Turks and serum folate and tHcy status are impaired by these mutations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Ochromonas danica grown on a chemically defined medium under controlled conditions in the light synthesized the following vitamins: ascorbate, B6, N5-methyltetrahydrofolate, tetrahydrofolate polyglutamates, oxidized folate monoglutamates, nicotinate, pantothenate, riboflavin, vitamin A, β-carotene, and vitamin E but no vitamin. B12. The cells also secreted molecules into their growth medium including the vitamins ascorbate, B6, the above folates, nicotinate, pantothenate, riboflavin, vitamin E, and the amino acids alanine, aspartic acid, leucine, and valine. The role of such secretions in nature is discussed.  相似文献   

16.
Maternal folic acid supplementation has been suggested to play a role in the prevention of nonsyndromic orofacial clefts, i.e., cleft lip +/- cleft palate. Using a case-control design, we investigated vitamin-dependent homocysteine metabolism in 35 mothers with nonsyndromic orofacial cleft offspring and 56 control mothers with nonmalformed offspring. A standardized oral methionine loading test was performed, in which fasting and afterload plasma total homocysteine, serum and red-cell folate, serum vitamin B12, and whole-blood vitamin B6 levels were determined. We found that both fasting (P < 0.01) as well as afterload (P < 0.05) homocysteine concentrations were significantly higher in cases compared to controls. Hyperhomocysteinemia, defined by a fasting and/or afterload homocysteine concentration above the 97.5th percentile, was present in 15.6% of the cases and in 3.6% of controls (odds ratio, 5.3 (1.1-24.2)). The median concentrations of serum (P < 0. 01) and red-cell (P < 0.05) folate were significantly higher, and vitamin B6 concentrations appeared to be significantly lower (P < 0. 05), in cases compared with controls. No significant difference was observed between groups for vitamin B12. These preliminary data offer evidence that maternal hyperhomocysteinemia may be a risk factor for having nonsyndromic orofacial cleft offspring.  相似文献   

17.
(i) Omission of L-methionine from the medium resulted in an 80% population reduction. Substitution of D,L-homocysteine corrected methionine deficiency in C. briggsae in the presence of supraoptimal vitamin B12 and folic acid. (ii) An absolute vitamin B12 requirement in C. briggsae developed in the medium containing homocysteine at the second subculture. Concentration of 6 ng/ml of vitamin B12 (at 100 ng/ml of folic acid) was sufficient to support maximum growth of C. briggsae in the medium containing homocysteine. (iii) It was found that either supraoptimal folic acid (2000 ng/ml) or supraoptimal vitamin B12 (3750 ng/ml), with homocysteine, supported very little population growth of C. briggsae. However, supraoptimal folic acid and supraoptimal vitamin B12 together supported a maximum population growth. Therefore, it was concluded that both vitamin B12 and folic acid were required for the biosynthesis of methionine from homocysteine. Studies also showed that the two vitamins spared each other for population growth in the medium containing homocysteine.  相似文献   

18.
High serum homocysteine (Hcy) level is regarded as an indicator for impairment of folate-dependent methionine cycle and is associated with oxidative stress. In a case control study, we evaluated eighty 3-5 years old Omani children (40 diagnosed with Autism Spectrum Disorder and 40 their age and gender matched controls) for their fasting serum homocysteine levels as a biomarker of Autism Spectrum Disorder (ASD). Serum folate and vitamin B(12) status were also evaluated. The serum homocysteine was measured using an enzyme immunoassay (EIA) technique whereas folate and vitamin B(12) were measured using an automated random access immune-assay system. The results indicated that mean serum Hcy levels were significantly (P < 0.05) higher in autistic children (20.1 ± 3.3 μmol/L) as compared to controls (9.64 ± 2.1 μmol/L). Significantly (P < 0.05) lower serum folate (1.8 ± 0.4 μg/L) and vitamin B(12) (191.1 ± 0.9 pg/mL) levels were observed in autistic children as compared to controls (6.1 ± 0.6 μg/L and 288.9 ± 1.3 pg/mL, respectively). The levels of homocysteine in autistic children were also much higher as compared to normal reference values (5-15 μmol/L). The results suggest that high fasting serum homocysteine and low folate and vitamin B(12) levels could be used as clinical biomarkers for an early diagnosis and management of ASD.  相似文献   

19.
Because vitamin B12 and Ni are known to interact and because of the similar metabolic roles of vitamin B12 and folate, an experiment was performed to determine the effect of dietary folate on Ni deprivation in rats. A 2×2 factorially arranged experiment used groups of nine weanling Sprague-Dawley rats. Dietary variables were Ni, as NiCl2·6H2O, 0 or 1 μg/g; and folic acid, 0 or 2 mg/kg. The basal diet, based on skim milk, contained less than 20 ng Ni/g. After 54 d, an interaction between dietary Ni and folate affected several variables including erythrocyte folate, plasma amino acids, and femur trace elements. For example, folate deprivation decreased erythrocyte folate; folate supplementation to the Ni-supplemented rats caused a larger increase in erythrocyte folate concentration than did folate supplementation to the Ni-deprived rats. Also, dietary Ni affected several plasma amino acids important in one-carbon metabolism (e.g., Ni deprivation increased the plasma concentrations of glycine and serine). This study shows that dietary Ni, folate, and their interaction can affect variables associated with one-carbon metabolism. This study does not show a specific site of action of Ni but it indicates that Ni may be important in processes related to the vitamin B12-dependent pathway in methionine metabolism, possibly one-carbon metabolism. US Department of Agriculture, Agricultural Research Service, Northern Plans Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

20.
The role of folic acid and Vitamin B12 in genomic stability of human cells   总被引:28,自引:0,他引:28  
Fenech M 《Mutation research》2001,475(1-2):57-67
Folic acid plays a critical role in the prevention of chromosome breakage and hypomethylation of DNA. This activity is compromised when Vitamin B12 (B12) concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation and DNA hypomethylation. In vivo studies show that Vitamin B12 deficiency and elevated plasma homocysteine are significantly correlated with increased micronucleus formation. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is >227nmol/l. Intervention studies in humans show: (a) that DNA hypomethylation, chromosome breaks, uracil misincorporation and micronucleus formation are minimised when red cell folate concentration is >700nmol/l folate; and (b) micronucleus formation is minimised when plasma concentration of Vitamin B12 is >300pmol/l and plasma homocysteine is <7.5micromol/l. These concentrations are achievable at intake levels in excess of current RDIs i.e. more than 200-400microgram folic acid per day and more than 2microgram Vitamin B12 per day. A placebo-controlled study with a dose-response suggests that based on the micronucleus index in lymphocytes, an RDI level of 700microgram/day for folic acid and 7microgram/day for Vitamin B12 would be appropriate for genomic stability in young adults. Dietary intakes above the current RDI may be particularly important in those with extreme defects in the absorption and metabolism of these Vitamins, for which ageing is a contributing factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号