首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

2.
Microcosms were designed to facilitate studies of the fate, functioning, and ecological effects of microorganisms released into the aquatic environment. The microcosms were three-phase systems (sediment/water/air) with three compartments (a primary producer component, a herbivore grazer component, and intact sediment cores). The microcosms were validated by comparing gross ecological parameters and microbial community structure between the microcosms and the eutrophic Lake Bagsværd, which was simulated in the model. The photosynthetic potential and chlorophyll a concentrations were significantly lower in the microcosms than in the lake, which apparently was due to inorganic nutrient limitation. In the microcosms, total bacterial numbers and metabolic activity by [3H]thymidine incorporation were unaffected by the reduced algal biomass and primary production, simulating field conditions closely, with a strong dependence on temperature. Two days after filling the microcosms, the percentage of similarity of the microbial communities in the microcosm and Lake Bagsværd was 40%, measured by hybridizations of total microbial DNA. The similarity increased during the 10-day experimental period to 63–76%. In two experiments, Alcaligenes eutrophus AEO106(pRO101) was released into the microcosms. The release reduced the similarity between microcosms and lake to 2% and 27%, depending on the number of introduced cells. Concomitant to a decline in the A. eutrophus AEO106(pRO101) population, the similarity gradually recovered. It is concluded that the microcosms can simulate a freshwater lake ecosystem, but care has to be taken when extrapolating microcosm results to the source ecosystem because of the possible different selective conditions in the microcosm.  相似文献   

3.
Pseudomonas sp. strain B13 FR1(pFRC20P) is a genetically engineered microorganism (GEM) which is able to degrade chloro- and methylaromatics through a constructed ortho cleavage pathway. The fate of the GEM and its ability to degrade substituted aromatic compounds in two different aquatic sediments was investigated by using a microcosm system which consisted of intact layered sediment cores with an overlying water column. The GEM survived in Lake Plussee and in Rhine river sediments at densities of approximately 10(5) bacteria per g (dry weight) (1 to 5% of the total CFU) throughout a 4-week period of investigation. According to several criteria, the microcosm system was stable and healthy throughout the experiment and the addition of the GEM did not affect the total number of extractable CFU (I. Wagner-D?bler, R. Pipke, K. N. Timmis, and D. F. Dwyer, Appl. Environ. Microbiol. 58:1249-1258, 1992). When compared with uninoculated controls, the presence of the GEM enhanced the rate of degradation of a mixture of 3-chlorobenzoate and 4-methylbenzoate (25 microns each) which had been added to the water column of the sediment cores.  相似文献   

4.
Pseudomonas sp. strain B13 FR1(pFRC20P) is a genetically engineered microorganism (GEM) which is able to degrade chloro- and methylaromatics through a constructed ortho cleavage pathway. The fate of the GEM and its ability to degrade substituted aromatic compounds in two different aquatic sediments was investigated by using a microcosm system which consisted of intact layered sediment cores with an overlying water column. The GEM survived in Lake Plussee and in Rhine river sediments at densities of approximately 10(5) bacteria per g (dry weight) (1 to 5% of the total CFU) throughout a 4-week period of investigation. According to several criteria, the microcosm system was stable and healthy throughout the experiment and the addition of the GEM did not affect the total number of extractable CFU (I. Wagner-Döbler, R. Pipke, K. N. Timmis, and D. F. Dwyer, Appl. Environ. Microbiol. 58:1249-1258, 1992). When compared with uninoculated controls, the presence of the GEM enhanced the rate of degradation of a mixture of 3-chlorobenzoate and 4-methylbenzoate (25 microns each) which had been added to the water column of the sediment cores.  相似文献   

5.
A microcosm system to physically model the fate of Aroclor 1242 in Hudson River sediment was developed. In the dark at 22 to 25 degrees C with no amendments (nutrients, organisms, or mixing) and with overlying water being the only source of oxygen, the microcosms developed visibly distinct aerobic and anaerobic compartments in 2 to 4 weeks. Extensive polychlorinated biphenyl (PCB) biodegradation was observed in 140 days. Autoclaved controls were unchanged throughout the experiments. In the surface sediments of these microcosms, the PCBs were biologically altered by both aerobic biodegrading and reductive dechlorinating microorganisms, decreasing the total concentration from 64.8 to 18.0 micromol/kg of sediment in 1140 days. This is the first laboratory demonstration of meta dechlorination plus aerobic biodegradation in stationary sediments. In contrast, the primary mechanism of microbiological attack on PCBs in aerobic subsurface sediments was reductive dechlorination. The concentration of PCBs remained constant at 64.8 micromol/kg of sediment, but the average number of chlorines per biphenyl decreased from 3.11 to 1.84 in 140 days. The selectivities of microorganisms in these sediments were characterized by meta and para dechlorination. Our results provide persuasive evidence that naturally occurring microorganisms in the Hudson River have the potential to attack the PCBs from Aroclor 1242 releases both aerobically and anaerobically at rapid rates. These unamended microcosms represent a unique method for determining the fate of released PCBs in river sediments.  相似文献   

6.
Naphthalene biodegradation was investigated in microcosms containing sediment and water collected from three ecosystems which varied in past exposure to anthropogenic and petrogenic chemicals. Mineralization half-lives for naphthalene in microcosms ranged from 2.4 weeks in sediment chronically exposed to petroleum hydrocarbons to 4.4 weeks in sediment from a pristine environment. Microbiological analysis of sediments indicated that hydrocarbon-utilizing microbial populations also varied among ecosystems and were 5 to 12 times greater in sediment after chronic petrogenic chemical exposure than in sediment from an uncontaminated ecosystem. Sediment from an ecosystem exposed to agricultural chemicals had a mineralization half-life of 3.2 weeks for naphthalene and showed about a 30-fold increase in heterotrophic bacterial populations in comparison to uncontaminated sediments, but only a 2- to 3-fold increase in hydrocarbon-degrading bacteria. Analysis of organic solvent-extractable residues from the microcosms by high-pressure liquid chromatography detected polar metabolites which accounted for 1 to 3% of the total radioactivity. Purification of these residues by thin-layer chromatography and further analysis by gas chromatography-mass spectrometry indicated that cis-1,2-dihydroxy-1,2-dihydronaphthalene, 1-naphthol, salicylic acid, and catechol were metabolites of naphthalene. These results provide useful estimates for the rates of naphthalene mineralization in different natural ecosystems and on the degradative pathway for microbial metabolism of naphthalene in freshwater and estuarine environments.  相似文献   

7.
Naphthalene biodegradation was investigated in microcosms containing sediment and water collected from three ecosystems which varied in past exposure to anthropogenic and petrogenic chemicals. Mineralization half-lives for naphthalene in microcosms ranged from 2.4 weeks in sediment chronically exposed to petroleum hydrocarbons to 4.4 weeks in sediment from a pristine environment. Microbiological analysis of sediments indicated that hydrocarbon-utilizing microbial populations also varied among ecosystems and were 5 to 12 times greater in sediment after chronic petrogenic chemical exposure than in sediment from an uncontaminated ecosystem. Sediment from an ecosystem exposed to agricultural chemicals had a mineralization half-life of 3.2 weeks for naphthalene and showed about a 30-fold increase in heterotrophic bacterial populations in comparison to uncontaminated sediments, but only a 2- to 3-fold increase in hydrocarbon-degrading bacteria. Analysis of organic solvent-extractable residues from the microcosms by high-pressure liquid chromatography detected polar metabolites which accounted for 1 to 3% of the total radioactivity. Purification of these residues by thin-layer chromatography and further analysis by gas chromatography-mass spectrometry indicated that cis-1,2-dihydroxy-1,2-dihydronaphthalene, 1-naphthol, salicylic acid, and catechol were metabolites of naphthalene. These results provide useful estimates for the rates of naphthalene mineralization in different natural ecosystems and on the degradative pathway for microbial metabolism of naphthalene in freshwater and estuarine environments.  相似文献   

8.
Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.  相似文献   

9.
Genetically engineered Pseudomonas sp. strain B13(FR1) was released into laboratory-scale marine ecosystem models (microcosms). Survival of the introduced population in the water column and the sediment was determined by plating on a selective medium and by quantitative competitive PCR. The activity of the released bacteria was determined by in situ hybridization of single cells with a specific rRNA-targeting oligonucleotide probe. Two microcosms were inoculated with 10(6) cells ml-1, while an uninoculated microcosm served as a control. The number of Pseudomonas sp. strain B13(FR1) cells decreased rapidly to ca. 10(2) cells ml-1 within 2 days after the release, which is indicative of grazing by protozoa. Three days after the introduction into seawater, cells were unculturable, but PCR continued to detect cells in low numbers. Immediately after the release, the ribosomal content of Pseudomonas sp. strain B13(FR1) corresponded to a generation time of 2 h. The growth rate decreased to less than 0.04 h-1 in 5 days and remained low, probably because of carbon limitation of the cells. Specific amendment of the microcosms with 10 mM 4-chlorobenzoate resulted in a rapid increase of the growth rate and an exponentially increasing number of cells detected by PCR, but not in resuscitation of the cells to a culturable state. The release of Pseudomonas sp. strain B13(FR1) into the microcosms seemed to affect only the indigenous bacterioplankton community transiently. Effects on the community were also apparent from the handling of water during filling of the microcosms and the amendment with 4-chlorobenzoate.  相似文献   

10.
The effect of oil amendment in salt marsh sediment microcosms was examined by most probable number (MPN), DNA-hybridization with domain-specific oligonucleotide probes and whole community 16S rDNA-hybridizations. Gas chromatography (GC/MS) analysis of oil residues in sediments from microcosms after 3 months of operation showed that the quantity of petroleum hydrocarbons was lower in microcosms amended with oil compared to microcosms amended with oil+plant detritus. Bacterial numbers (total-MPN) increased in all experimental microcosms (amended with plant detritus, oil, and oil+plant detritus). In comparison to the intact sediment, the proportions of oil-degrading bacteria increased >100-fold in the oil amended microcosm and >10-fold in the plant detritus and the oil+plant detritus amended microcosms. DNA-hybridizations with Bacteria, Archaea and Eukarya oligonucleotide probes indicated few changes in the petroleum contaminated sediment community profile. In contrast, rDNA-hybridizations indicated that the bacterial community profile of the oil-impacted sediments, after 1 month of exposure, was significantly different from the control sediment.  相似文献   

11.
The effects of oxygen concentration on photosynthesis and respiration in two hypersaline cyanobacterial mats were investigated. Experiments were carried out on mats from Eilat, Israel, with moderate photosynthetic activity, and mats from Mallorca, Spain, with high photosynthetic activity. The oxygen concentration in the overlying water above the mats was increased stepwise from 0% to 100% O2. Subsequent changes in oxygen concentration, gross photosynthetic rates, and pH values inside the mats were measured with microelectrodes. According to published reports on the regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme in the CO2-fixation pathway of phototrophs, we expected photosynthetic activity to decrease with increasing oxygen concentration. Gross photosynthetic and total respiration rates in both mats were highest when the O2 concentration was at 0% in the overlying water. Net oxygen production rates under these conditions were the same as under air saturation (21% O2), while gross photosynthetic and respiration rates were lowest at air saturation. In both mats, gross photosynthetic and respiration rates increased upon gradually increasing the oxygen concentration in the overlying water from 21% to 100%. These results contradict the expectation that photosynthesis decreases with increasing oxygen concentration. Increased photosynthetic rates at oxygen concentrations above 21% were probably caused by enhanced oxidation of organic matter and concomitant CO2 production due to the increased oxygen availability. The cause of the high respiration rates at 0% O2 in the overlying water was presumably the enhanced excretion of photosynthetic products during increased photosynthesis. We conclude that the effect of the O2/CO2 concentration ratio on the activity of Rubisco as demonstrated in vitro on enzyme extracts cannot be extrapolated to the situation in intact microbial mats, because the close coupling of the activity of primary producers and heterotrophic bacteria plays a major role in this ecosystem.  相似文献   

12.
Aerobic microbial degradation of pollutant oil (petroleum) in aquatic environments is often severely limited by the availability of combined nitrogen. We therefore studied whether the microbial community enriched in marine sediment microcosms with an added oil layer and exposure to light harboured nitrogenase activity. The acetylene reduction (AR) assay indeed indicated active nitrogenase; however, similar activity was observed in oil-free control microcosms. In both microcosms, the AR rate was significantly reduced upon a dark shift, indicating that enriched cyanobacteria were the dominant diazotrophs. Analysis of structural dinitrogenase reductase genes (nifH) amplified from both microcosms indeed revealed NifH sequences related mostly to those of heterocystous cyanobacteria. NifH sequences typically affiliating with those of heterotrophic bacteria were more frequently retrieved from the oil-containing sediment. Expression analyses showed that mainly nifH genes similar to those of heterocystous cyanobacteria were expressed in the light. Upon a dark shift, nifH genes related to those of non-heterocystous cyanobacteria were expressed. Expression of nifH assignable to heterotrophs was apparently not significant. It is concluded that cyanobacteria are the main contributors of fixed nitrogen to oil-contaminated and pristine sediments if nitrogen is a limiting factor and if light is available. Hence, also the oil-degrading heterotrophic community may thus receive a significant part of combined nitrogen from cyanobacteria, even though oil vice versa apparently does not stimulate an additional nitrogen fixation in the enriched community.  相似文献   

13.
The degradation of tributyltin (TBT) and changes of bacterial number and community structures were investigated in microcosms using the sediment collected from the Mekong River, Vietnam. Concentrations of TBT in sediments were less than 0.62 ng/g (dry wt), lower than those reported from other areas. TBT-resistant bacteria were found in the three sampling sites, and the occurrence rates were 11–16% out of the total viable count. In this microcosm experiment, initial concentration of TBT [1.0–1.4 μg/g (dry wt)] decreased to 0.6 μg/g (dry wt) during 150 days, whereas that in the control microcosm with autoclaved sediment did not change, indicating that Mekong River sediment contains high TBT-degrading activity by microorganisms. The occurrence of TBT-resistant bacteria and the bacterial community structures monitored by denaturing gradient gel electrophoresis were almost the same between test and control groups, indicating that the addition of TBT had little influence on microbial community structure. Mekong River sediment seems to have a stable microbial community against TBT pollution.  相似文献   

14.
We tested the effects of four different sediment types collected from northern Gulf of Mexico estuarine systems on macroinfaunal colonization and community development in our laboratory flow-through microcosm system. Four sediments, types included , a beach sand, two fine-grained muds, but from different locations, and a 50:50 mixture of one of the mud sediments and beach sand. Our hypothesis was that the pattern of colonization would differ among sediment types based on empirical field data and theory but the differences would be expressed most strongly at sediment type extremes (e.g., mud versus sand). A total of 49 taxa colonized the four sediments. Unidentified Actiniaria (sea anemones) numerically dominated densities among all four sediments with densities ranging between 46.5 to 60.5 per microcosm (20 cm side–1). Average taxa richness per microcosm (N: 10 replicates per sediment treatment) ranged from 10.4 in one of the mud treatments to 14.9 taxa in the sand. These were the only significant differences among sediment types (P0.05) in taxa richness and we detected no significant effects of sediment type on animal densities. Differences in community metrics, although statistically significant, were generally of a relatively small magnitude. Five of 10 microcosms per treatment were randomly selected to test for effects of sediment depth (e.g., top, mid, and bottom). In vertically sectioned microcosms, average taxa richness in sand treatments was significantly greater than those of the other three sediments. A non-parametric multivariate analysis (Primer) revealed that community structure in the vertically sectioned microcosms differed significantly between sand and one of the mud treatments. Mean taxa richness of top sections differed significantly from mid and bottom sections. We detected significantly higher animal densities and taxa richness (p0.05) in vertically sectioned versus non-sectioned microcosms. However, these differences were unexplained based on experimental protocols.  相似文献   

15.
SUMMARY.
  • 1 The microbial heterotrophic utilization of dissolved organic matter (DOM) was determined experimentally in microcosms using stream water and stream-bed sediments from a third order reach of White Clay Creek (Pennsylvania, U.S.A.).
  • 2 Sources of DOM for the experiments included White Clay Creek water at baseflow and stormflow and cold water extracts of jewel weed (Impatiens capensis L.) and spicebush (Linderu henzoin (L.) Blume).
  • 3 The heterotrophic activity of the sediments was measured as uptake of the following: dissolved organic carbon (DOC), molecular weight fractions within the DOC pool, carbohydrates, amino acids and peptides, phenolics, and dissolved oxygen (DO), all in the overlying water.
  • 4 Concentrations of adenosine triphosphate (ATP), and direct microscopic counts of bacteria were used to estimate bacterial biomass in the surface sediments.
  • 5 The microcosm experiments showed that specific DOC molecular size classes and DOM functional groups were selectively removed from solution, exposure to one DOM source affected responses to a different DOM source and certain DOM sources were more readily utilized than others.
  • 6 Continued exposure to a DOM source increased microbial heterotrophic activity (a condition which persisted even after removal of the DOM source for several days).
  • 7 Rates of biotic DOC uptake ranged from 3.6 to 242.8 mg Cm-2h-1.
  • 8 Indirect estimates of biosynthesis calculated from DOC and DO data ranged from 1.6 at baseflow and 2.6–61.2 at stormflow to as high as 192.6 mg C m-2 h-1 when the community was repeatedly exposed to enriched DOM sources.
  • 9 The mean generation times of bacteria in sediments, determined from direct microscopy data, ranged from 12.5 to 46.2 h at 15°C.
  相似文献   

16.
Aerobic and anaerobic groundwater continuous-flow microcosms were designed to study nitrate reduction by the indigenous bacteria in intact saturated soil cores from a sandy aquifer with a concentration of 3.8 mg of NO(3)-N liter. Traces of NO(3) were added to filter-sterilized groundwater by using a Darcy flux of 4 cm day. Both assimilatory and dissimilatory reduction rates were estimated from analyses of N(2), N(2)O, NH(4), and N-labeled protein amino acids by capillary gas chromatography-mass spectrometry. N(2) and N(2)O were separated on a megabore fused-silica column and quantified by electron impact-selected ion monitoring. NO(3) and NH(4) were analyzed as pentafluorobenzoyl amides by multiple-ion monitoring and protein amino acids as their N-heptafluorobutyryl isobutyl ester derivatives by negative ion-chemical ionization. The numbers of bacteria and their [methyl-H]thymidine incorporation rates were simultaneously measured. Nitrate was completely reduced in the microcosms at a rate of about 250 ng g day. Of this nitrate, 80 to 90% was converted by aerobic denitrification to N(2), whereas only 35% was denitrified in the anaerobic microcosm, where more than 50% of NO(3) was reduced to NH(4). Assimilatory reduction was recorded only in the aerobic microcosm, where N appeared in alanine in the cells. The nitrate reduction rates estimated for the aquifer material were low in comparison with rates in eutrophic lakes and coastal sediments but sufficiently high to remove nitrate from an uncontaminated aquifer of the kind examined in less than 1 month.  相似文献   

17.
Microcosms containing intact soil-cores are a potential biotechnology risk assessment tool for assessing the ecological effects of genetically engineered microorganisms before they are released to the field; however, microcosms must first be calibrated to ensure that they adequately simulate key field parameters. Soil-core microcosms were compared with the field in terms of ecological response to the introduction of a large inoculum of a rifampicin-resistant rhizobacterium,Pseudomonas sp. RC1. RC1 was inoculated into intact soil-core microcosms incubated in the laboratory at ambient temperature (22°C) and in a growth chamber with temperature fluctuations that mimicked a verage field values, as well as into field lysimeters and plots. The effect of the introduced bacterium on ecosystem structure, including wheat rhizoplane populations of total and fluorescent pseudomonads, total heterotrophic bacteria, and the diversity of total heterotrophic bacteria, was determined. Fluorescent pseudomonads were present on the rhizoplane in significantly lower numbers in soil inoculated with RC1, in both microcosms and the field. Conditions for microbial growth appeared to be most favorable in the growth chamber microcosm, as evidenced by higher populations of heterotrophs and a greater species diversity on the rhizoplane at the three-leaf stage of wheat growth. Ecosystem functional parameters, as determined by soil dehydrogenase activity, plant biomass production, and15N-fertilizer uptake by wheat, were different in the four systems. The stimulation of soil dehydrogenase activity by the addition of alfalfa was greater in the microcosms than in the field. In general, growth chamber microcosms, which simulated average field temperatures, were better predictors of field behavior than microcosms incubated continuously at 22°C.  相似文献   

18.
The vertical distribution of magnetotactic bacteria along various physico-chemical gradients in freshwater microcosms was analyzed by a combined approach of viable cell counts, 16S rRNA gene analysis, microsensor profiling and biogeochemical methods. The occurrence of magnetotactic bacteria was restricted to a narrow sediment layer overlapping or closely below the maximum oxygen and nitrate penetration depth. Different species showed different preferences within vertical gradients, but the largest proportion (63-98%) of magnetotactic bacteria was detected within the suboxic zone. In one microcosm the community of magnetotactic bacteria was dominated by one species of a coccoid "Alphaproteobacterium", as detected by denaturing gradient gel electrophoresis in sediment horizons from 1 to 10 mm depth. Maximum numbers of magnetotactic bacteria were up to 1.5 x 10(7) cells/cm3, which corresponded to 1% of the total cell number in the upper sediment layer. The occurrence of magnetotactic bacteria coincided with the availability of significant amounts (6-60 microM) of soluble Fe(II), and in one sample with hydrogen sulfide (up to 40 microM). Although various trends were clearly observed, a strict correlation between the distribution of magnetotactic bacteria and individual geochemical parameters was absent. This is discussed in terms of metabolic adaptation of various strains of magnetotactic bacteria to stratified sediments and diversity of the magnetotactic bacterial communities.  相似文献   

19.
An indigenous marine Achromobacter sp. was isolated from coastal Georgia seawater and modified in the laboratory by introduction of a plasmid with a phoA hybrid gene that directed constitutive overproduction of alkaline phosphatase. The effects of this "indigenous" genetically engineered microorganism (GEM) on phosphorus cycling were determined in seawater microcosms following the addition of a model dissolved organic phosphorus compound, glycerol 3-phosphate, at a concentration of 1 or 10 (mu)M. Within 48 h, a 2- to 10-fold increase in the concentration of inorganic phosphate occurred in microcosms containing the GEM (added at an initial density equivalent to 8% of the total bacterial population) relative to controls containing only natural microbial populations, natural populations with the unmodified Achromobacter sp., or natural populations with the Achromobacter sp. containing the plasmid but not the phoA gene. Secondary effects of the GEM on the phytoplankton community were observed after several days, evident as sustained increases in phytoplankton biomass (up to 14-fold) over that in controls. Even in the absence of added glycerol 3-phosphate, a numerically stable GEM population (averaging 3 to 5% of culturable bacteria) was established within 2 to 3 weeks of introduction into seawater. Moreover, alkaline phosphatase activity in microcosms with the GEM was substantially higher than that in controls for up to 25 days, and microcosms containing the GEM maintained the potential for net phosphate accumulation above control levels for longer than 1 month.  相似文献   

20.
The fluctuations of the number, biomass and composition of the heterotrophic community were studied daily for two days, according to depth, pH, Eh, O2 and organic carbon concentration within a zone of the canal between the Coyuca de Benitez lagoon (Guerrero, Mexico) and the coastal waters. At the three moments of the day studied (6 am, 2 pm and 10 pm), the oxygen concentrations in the overlying water and in the superficial sediment layer were near air-saturation in the diurnal samplings (582 microM at 6 am and 665 microM at 2 pm), and sub-satured during the night (158 microM). In the sediments, the models of vertical distribution of Eh and organic carbon distributions were very irregular due to the bio-perturbation of the benthic, meio- and macrofauna, whose activity allows the superficial organic carbon to migrate towards sediment deeper layers. Vertical distribution of the different viable bacteria populations seems to be related to the hydrodynamic patterns of the communicating canal and sediments heterogeneity. In the sediment column, the heterotrophic bacteria total number varied from 6.8 to 20.3 x 108 cells cm(-3). The highest heterotrophic bacterial biomass values were encountered during the diurnal samplings (39.2 microgC.l(-1) at 6 am and 34.4 microgC.(l(-1) at 2 pm) and the lowest during the night (9.7 microgC.l(-1). The fluctuations of viable heterotrophic bacteria populations with different respiratory metabolisms (aerobic, microaerophilic and anaerobic) can be explained by the existence of suboxic microniches that appear when particles of sediment are resuspended due to the water circulation and the benthic infauna excavating activity, that allows the supernatant water oxygen to penetrate through its galleries towards deeper sediment zones. The statistical analysis (Multiple lineal regression model r2 > or = 0.5) showed that the on the whole, the hydrological parameters are not influence over the bacterial number and bacterial biomass distribution (r2 < or = 0.5), Nevertheless, the variations of the heterotrophic bacteria community observed in the two days sampling, seem to be governed (with F-values of 0.6 to 0.9) by the irregular flows of bio-available organic material and the sediment porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号