首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post-labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α-globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.  相似文献   

2.
3.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

4.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

5.
Su9 of Escherichia coli differs from tRNATrp by only a G to A transition in the D arm, yet has an enhanced ability to translate UGA by an unusual C X A wobble pairing. In order to examine the effects of this mutation on translation of the complementary and wobble codons in vivo, we constructed the gene for an amber (UAG) suppressing variant of Su9, trpT179, by making the additional nucleotide change required for an amber suppressor anticodon. The resultant suppressor tRNA, Su79, is a very strong amber suppressor. Furthermore, the D arm mutation enables Su79 to suppress ochre (UAA) codons by C X A wobble pairing. These data demonstrate that the effect of the D arm mutation on wobble pairing is not restricted to a CCA anticodon. The effect extends to the CUA anticodon of Su79, thereby creating a new type of ochre suppressor. The new coding activity of Su79 cannot be explained by alterations in the level of aminoacylation, steady-state tRNA concentration, or nucleotide modification. The A24 mutation could permit unorthodox wobble pairings by generally enhancing tRNA efficiency at all codons or by altering codon specificity.  相似文献   

6.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

7.
Protein synthesis in ribosomes requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. Synthesis is also assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by their anticodons is known. The termination factors are thought to do this. In the large ribosomal RNA, we found two sites that, like tRNAs, contain the anticodon hairpin but with triplets complementary to stop codons. One site is hairpin 69 from domain IV; the other site is hairpin 89, domain V. By analogy, we call them termination tRNAs: Ter-tRNA1 and Ter-tRNA2, respectively, even though they transport no amino acids, and suggest that they directly pair to stop codons. The termination factors only aid in this recognition, making it specific and reliable. A strong argument in favor of our hypothesis comes from vertebrate mitochondria. They are known to acquire two new stop codons, AGA and AGG. In the standard code, these are two out of six arginine codons. We revealed that the corresponding anticodons, UCU and CCU, have evolved in Ter-tRNA1 of these mitochondria.  相似文献   

8.
Kothe U  Rodnina MV 《Molecular cell》2007,25(1):167-174
tRNAs reading four-codon families often have a modified uridine, cmo(5)U(34), at the wobble position of the anticodon. Here, we examine the effects on the decoding mechanism of a cmo(5)U modification in tRNA(1B)(Ala), anticodon C(36)G(35)cmo(5)U(34). tRNA(1B)(Ala) reads its cognate codons in a manner that is very similar to that of tRNA(Phe). As Ala codons are GC rich and Phe codons AU rich, this similarity suggests a uniform decoding mechanism that is independent of the GC content of the codon-anticodon duplex or the identity of the tRNA. The presence of cmo(5)U at the wobble position of tRNA(1B)(Ala) permits fairly efficient reading of non-Watson-Crick and nonwobble bases in the third codon position, e.g., the GCC codon. The ribosome accepts the C-cmo(5)U pair as an almost-correct base pair, unlike third-position mismatches, which lead to the incorporation of incorrect amino acids and are efficiently rejected.  相似文献   

9.
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such a recognition, making it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

10.
The tRNAs specified by the wild type and amber suppressor alleles of the Escherichia coli supD gene have been identified, and their primary structures determined. The sequences differ by a single nucleotide in the middle of the anticodon. A CUA anticodon allows the suppressor tRNA to read the UAG stop codon; the CGA anticodon in the minor serine tRNA species from which the suppressor is derived is specific for the serine codon UCG.  相似文献   

11.
Ivanov  V. I.  Beniaminov  A. D.  Mikheev  A. N.  Minyat  E. E. 《Molecular Biology》2001,35(4):614-622
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such recognition to make it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

12.
P F Agris 《Biochimie》1991,73(11):1345-1349
While recognized that some wobble exists in the base pairing of the first base of the tRNA anticodon with the third of the codon, specific base modifications have evolved to select particular codons. This modified-wobble theory would be exemplified by a single codon recognition imposed on the anticodon by modification of the tRNA wobble position nucleoside.  相似文献   

13.
14.
The reading of glutamine and lysine codons during protein synthesis in vitro has been investigated using an MS2-RNA-programed system derived from Escherichia coli. Under conditions when either glutaminyl-tRNA1Gln (s2UUG) or glutaminyl-tRNA2Gln (CUG) was the only source of glutamine for protein synthesis both tRNAs were able to read the glutamine codons CAA and CAG as indicated by the incorporation of labeled glutamine into the pertinent coat protein tryptic peptides. On the other hand, when the two glutamine tRNAs competed for the codon CAA the reading efficiency of the anticodon s2UUG, which reads the codon according to the wobble rules, was almost 40 times higher than that of the competing anticodon CUG, which reads the codon by "two out of three," i.e. it cannot form a regular base pair with the third codon position. In reading the codon CAG the anticodon CUG was approximately eight times more efficient than the anticodon s2UUG. The lysyl-tRNA1Lys (CUU) could not alone sustain any detectable coat protein synthesis in the MS2 system indicating that there was no significant reading of the lysine codon AAA. This conclusion is supported by the outcome of experiments where lysyl-tRNA1Lys (CUU) and lysyl-tRNA2Lys (s2UUU) competed for the codon AAA. The reading efficiency of the anticodon CUU was less than 1% of that of the competing s2UUU which represents the limit of resolution of our experimental system. When the two lysine tRNAs competed for the codon AAG the anticodon CUU was about four times more efficient than s2UUU. These results are discussed in the context of the two out of three hypothesis, which attempts to relate the frequency of such reading to the hydrogen bonding properties of the codon nucleotides.  相似文献   

15.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

16.
Recently, it was shown that wild-type glutamine tRNAs in yeast cause low-level nonsense suppression that can be enhanced by increasing glutamine tRNA gene copy number. In order to investigate glutamine tRNA behavior further, anticodon mutations that confer nonsense suppression were identified in yeast sup70 gene, which codes for glutamine tRNA(CAG). In this study we show that suppressors derived by mutation severely limit growth such that suppressor-bearing spores germinate but arrest cell division at approximately the 50 cell stage. Analysis of a sup70 deletion was used to establish that growth limitation results from loss of wild-type glutamine tRNA(CAG) function. By exploiting the growth inhibition of sup70 alleles, some exceptional codon recognition properties of glutamine tRNAs were revealed. Our results indicate that amber suppressor glutamine tRNA(UAG) can translate 5'-CAG-3' glutamine codons with low efficiency in the presence of an A/C mismatch at the first position of the codon, suggesting that reading may occur at a low level by a two-out-of-three reading mechanism. In addition, when glutamine tRNA(CAA) is over-expressed in vivo, it translates 5'-CAG-3' codons using a mechanism that resembles prokaryotic-like U/G wobble, which normally does not occur in yeast. Our studies also suggest that the yeast glutamine tRNA suppressors could potentially be exploited to express ciliated protozoan genes that normally contain internal 5'-UAG-3' and 5'-UAA-3' codons.  相似文献   

17.
We have isolated a gene that can encode yeast tRNA(CAGGln). When present on a multicopy plasmid, this gene suppresses the phenotype of a number of amber mutants, but has no effect on the ocher mutants tested. We therefore conclude that the anticodon CUG in tRNA(CAGGln) can decode the amber codon UAG by G-U mispairing, possibly by wobble base-pairing in the first codon position. This represents the second example we have observed in this laboratory of nonsense suppression in yeast by natural tRNA(Gln), involving G-U mispairing in the first codon position. Replacing the genomic copy of the cloned gene with a disrupted tRNA gene results in recessive lethality in heterozygous diploids and is lethal to haploid cells. This lethality can be rescued by transformation of cells with a single copy plasmid containing the tRNA(CAGGln) gene. Thus, the gene encoding tRNA(CAGGln) is apparently essential for viability in yeast, suggesting that it is normally present as a single copy gene.  相似文献   

18.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

19.
Out of more than 500 sequenced cytosolic tRNAs, there is only one with an unmodified adenosine in the wobble position (position 34). The reason for this rare occurrence of A34 is that it is mostly deaminated to inosine-34 (I34). I34 is a common constituent in the wobble position of tRNAs and has a decoding capacity different from that of A34. We have isolated a mutant (proL207) of Salmonella typhimurium, in which the wobble nucleoside G34 has been replaced by an unmodified A in tRNA(Pro)(GGG), which is the only tRNA that normally reads the CCC codon. Thus, this mutant apparently has no tRNA that is considered cognate for the codon CCC. Despite this, the mutant grows normally. As expected, Pro-tRNA selection at the CCC codon in the A-site in a mutant deleted for the proL gene, which encodes the tRNA(Pro)(GGG), was severely reduced. However, in comparison this rate of selection was only slightly reduced in the proL207 mutant with its A34 containing tRNA(Pro)(AGG) suggesting that this tRNA reads CCC. Moreover, measurements of the interference by a tRNA residing in the P-site on the apparent termination efficiency at the A-site indicated that indeed the A34 containing tRNA reads the CCC codon. We conclude that A34 in a cytosolic tRNA is not detrimental to the cell and that the mutant tRNA(Pro)(AGG) is able to read the CCC codon like its wild-type counterpart tRNA(Pro)(GGG). We suggest that the decoding of the CCC codon by a 5'-AGG-3' anticodon occurs by a wobble base-pair between a protonated A34 and a C in the mRNA.  相似文献   

20.
Decoding the genome: a modified view   总被引:10,自引:4,他引:6       下载免费PDF全文
Transfer RNA’s role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA’s ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA’s anticodon and those 3′-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U·U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon–codon interactions and expanding others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号