首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of acetylation was shown to exert only insignificant effects on the enzymatic hydrolysis of chitosan, while affecting the composition of the resulting hydrolysates and their water solubility. Chitosan with various degrees of acetylation was produced by reacetylation of the initial chitosan (the solvents, methanol and 2% acetic acid, were present in a ratio of 54 : 51 v/v; the amount of acetic anhydride was in the range 0.1–2.0 mmol per gram chitosan). Hydrolysis by the enzymatic preparation Celloviridin G20kh was performed at an enzyme-to-substrate ratio of 1 : 400 in sodium–acetate buffer, pH 5.2 (55°C) for 1 h.  相似文献   

2.
Chitosan, the deacetylated derivative of chitin, was until recently produced by hydrolysis in 50% (w/v) NaOH. Application of thermo-mechano-chemical technology to chitin deacetylation was evaluated as an alternative method of chitosan production. This process consists of a cascade reactor unit operating under reduced alkaline conditions of 10% (w/v) NaOH. Prior mercerization of chitin at 4 degrees C for 24 h was required for high deacetylation yields. Sudden decompression of the aqueous alkaline suspension of mercerized chitin resulted in near complete deacetylation of chitin. Reactor residence time was 90 s at 230 degrees C prior to decompression. The chitosan produced was characterized by elemental analysis, (13)C-NMR and enzymatic depolymerization. Enzymatic determination of the degree of acetylation of chitin/chitosan mixtures was also investigated. Relative chitinase and/or chitosanase digestibilities were shown to be strongly dependent on chitin deacetylation. Based on enzymatic digestibilities, the alkaline aqueous high shear process does not appear to produce significant secondary products. Correlation of chitosanase digestibility with percentage of deacetylation provides a simple biological assay to study chitosan composition.  相似文献   

3.
将高度脱乙酰化的壳聚糖在均相介质中进行N-乙酰化反应,制备水溶性壳聚糖。研究了制备工艺条件对脱乙酰度及水溶性的影响。结果表明,在乙酸—乙醇均相体系中进行乙酰化反应时,壳聚糖与乙酸酐的质量比为1∶0.6,反应温度控制在20℃,反应时间为8 h时,产品的脱乙酰度在50%左右,获得了水溶性良好的N-乙酰化壳聚糖。  相似文献   

4.
The degree of acetylation of chitosan can be determined in acetic acid solutions (~0·01m) containing 1 g dry chitosan per litre by first derivative ultraviolet spectrophotometry at 199 nm. At this wavelength, the N-acetylglucosamine absorbance readings are linearly dependent on concentration and are not influenced by the presence of acetic acid. Correction factors for the contribution of glucosamine in highly deacetylated chitosans can be easily derived. Typical results for the chitosan of Euphausia superba are: degree of acetylation, 42·6; relative standard deviation, 1·3%; confidence limits, ±0·7. This method is simpler, more precise and faster than the infrared method. Sonication of chitosan solutions leads to immediate chain degradation and to detectable deacetylation after more prolonged periods of time, especially when the pH is 1·0.  相似文献   

5.
A low-molecular-weight water-soluble chitosan was obtained from high-molecular-weight crab chitosan using the enzyme preparation Celloviridine G20x. Optimum conditions for the enzymatic hydrolysis were designed. The reaction should be performed for 4 h in a sodium-acetate buffer (pH 5.2) at 55 degrees C and the enzyme to substrate ratio of 1:400. Fractional extraction of chitosan hydrolysate by aqueous ethanol (ethanol: distilled water) yielded fractions with molecular weights in the range 3.2-26.4 kDa.  相似文献   

6.
Decoloration of chitosan by UV irradiation, which was used to replace a bleaching step during chitosan preparation, was evaluated under four separate treatments (effect of irradiation time, chitosan/water ratio, stirring speed, and UV light source). The optimal decoloration condition was defined as that producing white chitosan with higher viscosity. Decoloration of chitosan could be achieved effectively using a UV-C light by stirring unbleached chitosan in water (1:8, w/v) for 5 min at 120 rpm. UV irradiation applied under the optimal conditions could be used to produce chitosan with desirable white color (L* = 76.95, a* = −0.37, and b* = 14.04) and high viscosity (1301.7 mPa s at 0.5% w/v in 1.0% v/v acetic acid).  相似文献   

7.
Chemoenzymatic syntheses of amylose-grafted chitin and chitosan   总被引:1,自引:0,他引:1  
Amylose-grafted chitin and chitosan were synthesized by chemoenzymatic methods according to the following reaction manners. First, maltoheptaose was introduced to chitosan by a reductive amination using sodium cyanotrihydroborate in a mixed solvent of 1.0 mol/L aqueous acetic acid and methanol at room temperature to produce a maltoheptaose-grafted chitosan (1). The functionality of maltoheptaose to chitosan in 1 depended on reaction time. The phosphorylase-catalyzed enzymatic polymerization of R-D-glucose 1-phosphate was then performed from 1 to obtain amylose-grafted chitosan (2). Maltoheptaose-grafted chitin (3) was synthesized by N-acetylation of 1 using acetic anhydride in a mixed solvent of aqueous acetic acid and methanol. Then, synthesis of amylose-grafted chitin (4) was performed by the phosphorylase-catalyzed enzymatic polymerization under conditions the same as those for 2. The average DPs of amylose graft chains in 2 and 4 depended on the feed ratios of R-D-glucose 1-phosphate to maltoheptaose primers in 1 and 3.  相似文献   

8.
A new method was developed in this work for extraction of chitosan from the zygomycetes cell wall. It is based on the temperature-dependent solubility of chitosan in dilute sulfuric acid. Chitin is soluble in neither cold nor hot dilute sulfuric acid. Similarly chitosan is not soluble at room temperature but is dissolved in 1% H 2SO 4 at 121 degrees C within 20 min. The new method was developed to measure the chitosan content of the biomass and cell wall. The procedures were investigated by measuring phosphate, protein, ash, glucuronic acid, and degree of acetylation. The cell wall derivatives of fungus Rhizomucor pusillus were then examined by this new method. The results indicated 8% of the biomass as chitosan. After treatment with NaOH, the alkali-insoluble material (AIM) contained 45.3% chitosan. Treatment of AIM with acetic acid resulted in 16.5% acetic-acid-soluble material (AcSM) and 79.0% alkali- and acid-insoluble material (AAIM). AcSM is usually cited as pure chitosan, but the new method shows major impurities by, for example, phosphate. Furthermore, AAIM is usually considered to be the chitosan-free fraction, whereas the new method shows more than 76% of the chitosan present in AIM is found in AAIM. It might indicate the inability of acetic acid to separate chitosan from the cell wall.  相似文献   

9.
This article describes the optimal conditions for the enzymatic hydrolysis of chitosan and its chemically-modified derivatives using the preparation extracted from the king crab hepatopancrease possessing pronounced hydrolythic activity. The following preparations were used: chitosan with a molecular weight of 700 kDa and an acetylation level of 0.15, carboxymethyl chitosan 200 kDa witih an extent of replacement of 0.23, and N-succinyl chitosan 390 kDa with an extent of replacement of 0.8. Low molecular-weight samples of chitosan and of its modified derivatives were obtained with the yields of 85, 55, and 80%, respectively. The conditions of the hydrolysis were as follows: an enzyme: substrate ratio of 1: 200, 37°C, and 20 h duration of hydrolysis.  相似文献   

10.
The possibility of enzymatic hydrolysis of chitosan was shown. The optimum conditions for the process are: sodium acetate buffer pH 6.0, 37 degrees C, 24 h, and the chitosan sulfate-protein volume ratio of 500:1 in the enzyme preparation. During hydrolysis, the intrinsic viscosity of chitosan sulfate solution decreased by a factor of 2.7.  相似文献   

11.
N-(2-Carboxyethyl)chitosans were obtained by reaction of low molecular weight chitosan with a low degree of acetylation and 3-halopropionic acids under mild alkaline media (pH 8-9, NaHCO3) at 60 degrees C. The chemical structure of the derivatives obtained was determined by 1H and 13C NMR spectroscopies. It was found that alkylation of chitosan by 3-halopropionic acids proceeds exclusively at the amino groups. The products obtained are described in terms of their degrees of carboxyethylation and ratio of mono-, di-substitution and free amine content. The protonation constants of amino and carboxylate groups of a series of N-(2-carboxyethyl)chitosans were determined by pH-titration at ionic strength 0.1 M KNO3 and 25 degrees C.  相似文献   

12.
M Enquist  J Hermansson 《Chirality》1989,1(3):209-215
A method for the determination of (R)- and (S)-atenolol in human plasma and urine is described. The enantiomers of atenolol are extracted into dichloromethane containing 3% heptafluorobutanol followed by acetylation with acetic anhydride at 60 degrees C for 2 h. The acetylated enantiomers were separated on a chiral alpha 1-AGP column. Quantitation was performed using fluorescence detection. A phosphate buffer pH 7.1 (0.01 M phosphate) containing 0.25% (v/v) acetonitrile was used as mobile phase. The described procedure allows the detection of less than 6 ng of each enantiomer in 1 ml plasma. The relative standard deviation is 4.4% at 30 ng/ml of each enantiomer in plasma. The plasma concentration of (R)- and (S)-atenolol did not differ significantly in two subjects who received a single tablet of racemic atenolol. The R/S ratio of atenolol in urine was approximately 1.  相似文献   

13.
Grapefruit peel polysaccharide has antioxidant, antitumor, hypoglycemic and other biological activities, and chemical modification can further improve the properties of the polysaccharide. Acetylation modification of polysaccharides has the advantages of simple operation, low cost and little pollution, and is widely used at present. Different degrees of acetylation modification have different effects on the properties of polysaccharides, so it is necessary to optimize the preparation technology of acetylated grapefruit peel polysaccharides. In this article, acetylated grapefruit peel polysaccharide was prepared by acetic anhydride method. With the degree of acetyl substitution as the evaluation index, combined with the analysis of sugar content and protein content in the polysaccharide before and after modification, the effects of three feeding ratios of 1:0.6, 1 : 1.2 and 1 : 1.8 (polysaccharide: acetic anhydride, mass/volume) on acetylation modification were explored through single factor experiments. The results showed that the optimum ratio of material to liquid for acetylation modification of grapefruit peel polysaccharide was 1:0.6. Under these conditions, the degree of substitution of acetylated grapefruit peel polysaccharide was 0.323, the sugar content was 59.50 % and the protein content was 1.038 %. The results provide some reference for the study of acetylated grapefruit peel polysaccharide.  相似文献   

14.
Low-molecular-weight (3-6 kDa) water-soluble chitosan was obtained by enzymatic depolymerization. Hydrolysis of crab chitosan was induced by O-glycoside hydrolase (EC 3.2.1), an extracellular chitinolytic complex from Bacillus sp. 739. The optimum conditions for hydrolysis were found (sodium-acetate buffer, pH 5.2; 55 degrees C; an enzyme/substrate ratio 4 U/g chitosan; 1 h).  相似文献   

15.
Sugarcane bagasse was esterified with acetic anhydride using N-bromosuccinimide as a catalyst under mild conditions in a solvent free system. The extent of acetylation was measured by weight percent gain, which varied from 2.1% to 24.7% by changing the reaction temperature (25-130 degrees C) and duration (0.5-6.0 h). N-Bromosuccinimide was found to be a novel and highly effective catalyst for acetylation of hydroxyl groups in bagasse. At a concentration of 1% of the catalyst in acetic anhydride, a weight percent gain of 24.7% was achieved at 120 degrees C for 1 h, compared with 5.1% for the un-catalyst reaction under the same reaction condition. FT-IR and CP-MAS 13C-NMR studies produced evidence for acetylation. The thermal stability of the products decreased slightly upon chemical modification, but no significant decrease in thermal stability was observed for WPG > or = 24.7%. More importantly, the acetylation significantly increased hydrophobic properties of the bagasse. The oil sorption capacity of the acetylated bagasse obtained at 80 degrees C for 6 h, was 1.9 times higher than the commercial synthetic oil sorbents such as polypropylene fibres. Therefore, these oil sorption-active materials can be used to substitute non-biodegradable materials in oil spill cleanup.  相似文献   

16.
Low molecular weight chitosans (LMWC) of different molecular weight (4.1-5.6 kDa) were obtained by the depolymerization of chitosan using papain (from Carica papaya latex, EC. 3.4.22.2) at optimum conditions of pH 3.5 and 37 degrees C for 1-5 h. Scanning electron microscopy (SEM) showed approximately 15-fold decrease in the particle size after depolymerization. Decrease in the molecular weight was associated with decrease in the degree of acetylation (DA) as evidenced by circular dichroism (CD), FT-IR and solid-state CP-MAS 13C-NMR data. X-ray diffraction pattern revealed slight decrease in the crystallinity index (CrI) whereas the 13C-NMR data showed molecular inhomogeneity. LMWC showed lytic effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. The growth inhibitory effect was maximal towards B. cereus, with minimum inhibitory concentration (MIC) of 0.01% (w/v).  相似文献   

17.
Free chitosan, 2 g/100g mycelia from Gongronella butleri and 6.5 g/100g mycelia from Absidia coerulea were isolated by 1M NaOH at 45 degrees C for 13 h and 0.35 M acetic acid at 95 degrees C for 5 h. Both myceliar matrixes did not break down under these conditions. However, myceliar matrix could be decomposed by treatment with 11 M NaOH at 45 degrees C for 13 h and 0.35 M acetic acid at 95 degrees C for 5 h and then extracted the total chitosan, 8-9 g/100g mycelia from both fungi. According to these results, G. butleri has higher amount of complexed chitosan and A. coerulea has higher amount in free chitosan.  相似文献   

18.
Chitosan bicomponent nanofibers and nanoporous fibers   总被引:5,自引:0,他引:5  
Li L  Hsieh YL 《Carbohydrate research》2006,341(3):374-381
Nanofibers with average diameters between 20 and 100nm have been prepared by electrospinning of 82.5% deacetylated chitosan (Mv=1600 kDa) mixed with poly(vinyl alcohol) (PVA, Mw=124-186 kDa) in 2% (v/v) aqueous acetic acid. The formation of bicomponent fibers was feasible with 3% concentration of solution containing up to an equal mass of chitosan. Finer fibers, fewer beaded structures and more efficient fiber formation were observed with increasing PVA contents. Nanoporous fibers could be generated by removing the PVA component in the 17/83 chitosan/PVA bicomponent fibers with 1M NaOH (12 h). Fiber formation efficiency and composition uniformity improved significantly when the molecular weight of chitosan was halved by alkaline hydrolysis (50 wt% aqueous NaOH, 95 degrees C, 48 h). The improved uniform distribution of chitosan and PVA in the bicomponent fibers was attributed to better mixing mostly due to the reduced molecular weight and to the increased deacetylation of the chitosan.  相似文献   

19.
Our study confirms the presence of chitinolytic, chitosanolytic, and deacetylase activities in the hepatopancreas of the red king crab, related to the specific diet of this species. The maximum rate of chitin/chitosan hydrolysis by an enzyme preparation from crab hepatopancreas occurs at 36.5-37.0 degrees C. Two pH optimums have been found for the enzymatic reaction under mildly alkaline and acidic conditions for both exo- and endochitinase activities. The enzyme preparation is most affine to partly deacetylated chitin with an acetylation degree within 40-50%.  相似文献   

20.
Circular dichroism measurements revealed that hen egg-white lysozyme underwent multiple conformational transitions upon the addition of acetic acid. The transitions were reversible as judged from complete recoveries of enzymatic activity, electrophoretic mobility in SDS-polyacrylamide gel, and of ellipticity. Two transitions, with the mid-concentrations of 26 and 38% (v/v), were observed with the CD spectra in the amide absorption region. The two transitions were essentially athermal in the temperature ranges, 0 to 25 degrees C for the former and -10 to 10 degrees C for the latter. The trough ellipticity for the product of the transition at the higher acetic acid concentration (DII form) very closely approached the value for the synthetic polypeptides in the beta-conformation as the temperature was lowered. Molecular weight measurements by sedimentation equilibrium indicated that the products were both monomeric. Measurements of CD spectra in the aromatic absorption region showed another transition, whose mid-concentration varied with temperature from 26% (v/v) (at about 25 degrees C) to 38% (v/v) (at -10 degrees C). A change in the hydrodynamic volume detectable by exclusion chromatography was associated with this transition only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号