首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Y  Deshpande A  Xie Z  Natesh R  Acharya KR  Brew K 《Glycobiology》2004,14(12):1295-1302
Aromatic amino acids are frequent components of the carbohydrate binding sites of lectins and enzymes. Previous structural studies have shown that in alpha-1,3 galactosyltransferase, the binding site for disaccharide acceptor substrates is encircled by four tryptophans, residues 249, 250, 314, and 356. To investigate their roles in enzyme specificity and catalysis, we expressed and characterized variants of the catalytic domain of alpha-1,3 galactosyltransferase with substitutions for each tryptophan. Substitution of glycine for tryptophan 249, whose indole ring interacts with the nonpolar B face of glucose or GlcNAc, greatly increases the K(m) for the acceptor substrate. In contrast, the substitution of tyrosine for tryptophan 314, which interacts with the beta-galactosyl moiety of the acceptor and UDP-galactose, decreases k(cat) for the galactosyltransferase reaction but does not affect the low UDP-galactose hydrolase activity. Thus, this highly conserved residue stabilizes the transition state for the galactose transfer to disaccharide but not to water. High-resolution crystallographic structures of the Trp(249)Gly mutant and the Trp(314)Tyr mutant indicate that the mutations do not affect the overall structure of the enzyme or its interactions with ligands. Substitutions for tryptophan 250 have only small effects on catalytic activity, but mutation of tryptophan 356 to threonine reduces catalytic activity for both transferase and hydrolase activities and reduces affinity for the acceptor substrate. This residue is adjacent to the flexible C-terminus that becomes ordered on binding UDP to assemble the acceptor binding site and influence catalysis. The results highlight the diverse roles of these tryptophans in enzyme action and the importance of k(cat) changes in modulating glycosyltransferase specificity.  相似文献   

2.
Glucokinase catalyzes phosphoryl group transfer from ATP to glucose to form glucose-6-phosphate in the first step of cellular metabolism. While the location of the ATP-binding site of glucokinase was proposed recently, limited information exists on its conformation or the key amino acids involved in substrate binding. Affinity labeling with phenylglyoxal is used to probe possible Arg residues involved in ATP binding. Electrospray ionization mass spectrometry indicates that reaction of purified glucokinase with phenylglyoxal results in as many as six or seven sites of modification, suggesting nonspecific modification. However, preincubation of glucokinase with glucose followed by reaction with phenylglyoxal reveals only two sites of modification. Glucokinase activity assays show that enzyme preincubated with glucose possesses residual activity corresponding to the fraction of unmodified enzyme observed by mass spectrometry, strongly suggesting that glucokinase preincubated with glucose is specifically labeled and inactivated upon modification by phenylglyoxal. The data support the existing conformational model of glucokinase.  相似文献   

3.
The crystal structure of acutohaemolysin, a lysine 49 phospholipase A2 protein with 1010 non-hydrogen protein atoms and 232 water molecules, has been determined ab initio using the program SnB at an ultrahigh resolution of 0.8 A. The lack of catalytic activity appears to be related to the presence of Phe102, which prevents the access of substrate to the active site. The substitution of tryptophan for leucine at residue 10 interferes with dimer formation and may be responsible for the additional loss of hemolytic activity. The ultrahigh resolution of the experimental diffraction data permits alternative conformations to be modeled for disordered residues, many hydrogen atoms to be located, the protonation of the Nepsilon2 atom in the catalytic residue His48 to be observed experimentally, and the density of the bonding electrons to be analyzed in detail.  相似文献   

4.
J Sondek  D Shortle 《Proteins》1990,7(4):299-305
Single alanine and glycine insertions were introduced at 20 randomly selected positions in staphylococcal nuclease. The resulting changes in catalytic activity and in stability to guanidine hydrochloride denaturation indicate that the native state structure is frequently able to accommodate the extra residue without great difficulty, even insertions within secondary structural elements such as alpha helices and beta sheets. On average, an inserted residue reduces the free energy of denaturation (delta GH2O) by an amount roughly comparable to an alanine or glycine substitution for one of the residues flanking the site of insertion. Several positions outside of the enzyme active site were found where insertions, but not substitutions, lead to structural changes that modify catalytic activity and the circular dichroism spectrum. Amino acid insertions represent a virtually unexplored class of genetic mutation that may prove complementary to amino acid substitutions for engineering proteins with altered functional and structural properties.  相似文献   

5.
The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity of the catalytic aspartate residues, increasing the distance between them to approximately 4A and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.  相似文献   

6.
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.  相似文献   

7.
CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation.  相似文献   

8.
Lassila JK  Keeffe JR  Kast P  Mayo SL 《Biochemistry》2007,46(23):6883-6891
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.  相似文献   

9.
Macromolecular substrate docking with coagulation enzyme-cofactor complexes involves multiple contacts distant from the enzyme's catalytic cleft. Here we characterize the binding of the Gla-domain of macromolecular substrate coagulation factor X to the complex of tissue factor (TF) and VIIa. Site-directed mutagenesis of charged residue side chains in the VIIa Gla-domain identified Arg-36 as being important for macromolecular substrate docking. Ala substitution for Arg-36 resulted in an increased KM and a decreased rate of X activation. X with a truncated Gla-domain was activated by mutant and wild-type VIIa at indistinguishable rates, demonstrating that Arg-36 interactions require a properly folded Gla-domain of the macromolecular substrate. VIIa Arg-36 was also required for effective docking of the X Gla-domain in the absence of phospholipid, demonstrating that the Gla-domain of VIIa participates in protein-protein interactions with X. In the absence of TF, the mutant VIIa had essentially normal function, indicating that the cofactor positions VIIa's Gla-domain for optimal macromolecular substrate docking. Computational docking suggests multiple charge complementary contacts of the X Gla-domain with TF.VIIa. A prominent interaction is made by the functionally important X residue Gla-14 with the center of the extended docking site created by residues in the carboxyl module of TF and the contiguous VIIa Gla-domain. These data demonstrate the functional importance of interactions of the Gla-domains of enzyme and substrate, and begin to elucidate the molecular details of the ternary TF.VIIa.X complex.  相似文献   

10.
UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases), which initiate mucin-type O-glycan biosynthesis, have broad acceptor substrate specificities, and it is still unclear how they recognize peptides with different sequences. To increase our understanding of the catalytic mechanism of GalNAc-T1, one of the most ubiquitous isozymes, we studied the effect of substituting six conserved aromatic residues in the highly conserved Gal/GalNAc-glycosyltransferase motif with leucine on the catalytic properties of the enzyme. Our results indicate that substitutions of Trp302 and Phe325 have little impact on enzyme function and that substitutions of Phe303 and Tyr309 could be made with only limited impact on the interaction(s) with donor and/or acceptor substrates. By contrast, Trp328 and Trp316 are essential residues for enzyme functions, as substitution with leucine, at either site, led to complete inactivation of the enzymes. The roles of these tryptophan residues were further analyzed by evaluating the impact of substitutions with additional amino acids. All evaluated substitutions at Trp328 resulted in enzymes that were completely inactive, suggesting that the invariant Trp328 is essential for enzymatic activity. Trp316 mutant enzymes with nonaromatic replacements were again completely inactive, whereas two mutant enzymes containing a different aromatic amino acid, at position 316, showed low catalytic activity. Somewhat surprisingly, a kinetic analysis revealed that these two amino acid substitutions had a moderate impact on the enzyme's affinity for the donor substrate. By contrast, the drastically reduced affinity of the Trp316 mutant enzymes for the acceptor substrates suggests that Trp316 is important for this interaction.  相似文献   

11.
The alpha-glucosidase of Bacillus sp. strain SAM1606 is a member of glycosyl hydrolase family 13, and shows an extraordinarily broad substrate specificity and is one of very few alpha-glucosidases that can efficiently hydrolyze the alpha-1,1-glucosidic linkage of alpha,alpha'-trehalose (trehalose). Phylogenetic analysis of family-13 enzymes suggests that SAM1606 alpha-glucosidase may be evolutionally derived from an alpha-1,6-specific ancestor, oligo-1,6-glucosidase (O16G). Indeed, replacement of Pro(273*) and Thr(342*) of B. cereus O16G by glycine and asparagine (the corresponding residues in the SAM1606 enzyme), respectively, was found to cause 192-fold enhancement of the relative catalytic efficiency for trehalose, suggesting that O16G may easily "evolved" into an enzyme with an extended substrate specificity by substitution of a limited number of amino acids, including that at position 273* (an asterisk indicates the amino-acid numbering of the SAM1606 sequence). To probe the role of the amino acid at position 273* of alpha-glucosidase in determination of the substrate specificity, the amino acid at position 273 of SAM1606 alpha-glucosidase was replaced by all other naturally occurring amino acids, and the resultant mutants were kinetically characterized. The results showed that substitution of bulky residues (e.g., isoleucine and methionine) for glycine at this position resulted in large increases in the K(m) values for trehalose and maltose, whereas the affinity to isomaltose was only minimally affected by such an amino-acid substitution at this position. Three-dimensional structural models of the enzyme-substrate complexes of the wild-type and mutant SAM1606 alpha-glucosidases were built to explore the mechanism responsible for these observations. It is proposed that substitution by glycine at position 273* could eliminate steric hindrance around subsite +1 that originally occurred in parental O16G and is, at least in part, responsible for the acquired broad substrate specificity of SAM1606 alpha-glucosidase.  相似文献   

12.
Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the high activity, high activity R state.  相似文献   

13.
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing "flaps," and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P,G106V, as well as the triple mutant, H65G,R105P,G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein.  相似文献   

14.
Apiyo D  Zhao L  Tsai MD  Selby TL 《Biochemistry》2005,44(30):9980-9989
Phosphatidylinositol-specific phospholipase Cs (PLCs) are a family of phosphodiesterases that catalyze the cleavage of the P-O bond via transesterification using the internal hydroxyl group of the substrate as a nucleophile, generating the five-membered cyclic inositol phosphate as an intermediate or product. To better understand the role of calcium in the catalytic mechanism of PLCs, we have determined the X-ray crystal structure of an engineered PLC enzyme from Bacillus thuringiensis to 2.1 A resolution. The active site of this enzyme has been altered by substituting the catalytic arginine with an aspartate at position 69 (R69D). This single-amino acid substitution converted a metal-independent, low-molecular weight enzyme into a metal ion-dependent bacterial PLC with an active site architecture similar to that of the larger metal ion-dependent mammalian PLC. The Ca(2+) ion shows a distorted square planar geometry in the active site that allows for efficient substrate binding and transition state stabilization during catalysis. Additional changes in the positions of the catalytic general acid/general base (GA/GB) were also observed, indicating the interrelation of the intricate hydrogen bonding network involved in stabilizing the active site amino acids. The functional information provided by this X-ray structure now allows for a better understanding of the catalytic mechanism, including stereochemical effects and substrate interactions, which facilitates better inhibitor design and sheds light on the possibilities of understanding how protein evolution might have occurred across this enzyme family.  相似文献   

15.
Animal catechol O-methyltransferases and plant caffeoyl-coenzyme A O-methyltransferases share about 20% sequence identity and display common structural features. The crystallographic structure of rat liver catechol O-methyltransferase was used as a template to construct a homology model for tobacco caffeoyl-coenzyme A O-methyltransferase. Integrating substrate specificity data, the three-dimensional model identified several amino acid residues putatively involved in substrate binding. These residues were mutated by a polymerase chain reaction method and wild-type and mutant enzymes were each expressed in Escherichia coli and purified. Substitution of Arg-220 with Thr resulted in the total loss of enzyme activity, thus indicating that Arg-220 is involved in the electrostatic interaction with the coenzyme A moiety of the substrate. Changes of Asp-58 to Ala and Gln-61 to Ser were shown to increase K(m) values for caffeoyl coenzyme A and to decrease catalytic activity. Deletions of two amino acid sequences specific for plant enzymes abolished activity. The secondary structures of the mutants, as measured by circular dichroism, were essentially unperturbed as compared with the wild type. Similar changes in circular dichroism spectra were observed after addition of caffeoyl coenzyme A to the wild-type enzyme and the substitution mutants but not in the case of deletion mutants, thus revealing the importance of these sequences in substrate-enzyme interactions.  相似文献   

16.
Within a research project aimed at probing the substrate specificity and the enantioselectivity of Candida rugosa lipase (CRL), computer modeling studies of the interactions between CRL and methyl (+/-)-2-(3-benzoylphenyl)propionate (Ketoprofen methyl ester) have been carried out in order to identify which amino acids are essential to the enzyme/substrate interaction. Different binding models of the substrate enantiomers to the active site of CRL were investigated by applying a computational protocol based on molecular docking, conformational analysis, and energy minimization procedures. The structural models of the computer generated complexes between CRL and the substrates enabled us to propose that Phe344 and Phe345, in addition to the residues constituting the catalytic triad and the oxyanion hole, are the amino acids mainly involved in the enzyme-ligand interactions. To test the importance of these residues for the enzymatic activity, site-directed mutagenesis of the selected amino acids has been performed, and the mutated enzymes have been evaluated for their conversion and selectivity capabilities toward different substrates. The experimental results obtained in these biotransformation reactions indicate that Phe344 and especially Phe345 influence CRL activity, supporting the findings of our theoretical simulations.  相似文献   

17.
Comparison and multiple alignments of amino acid sequences of a representative number of related enzymes demonstrate the existence of certain positions of amino acid residues which are permanently reproducible in all members of the whole family. The use of the bioinformatic approach revealed conservative residues in each of the related enzymes and ranked amino acid conservatism for the overall enzymatic catalysis. Glycine and aspartic acid residues were shown to be the most essential for structure and catalytic activity of enzymes. Amino acid residues forming catalytic subsite of the active site of enzymes are always highly conservative. Analysis revealed that aspartic acid carboxyl group is the most frequently employed nucleophilic (in deprotonated form) and electrophilic (in protonated form) agent involved in activation of molecules by the mechanism of general base and acidic catalyses in the catalytic sites of enzymes. Glycine is a unique amino acid possessing the highest possibilities for rotation along C–C and C–N bonds of the polypeptide chain. The conservative fixation of the glycine residue in polypeptide chains of related enzymes provides a possibility for directed assembly of amino acid residues into the catalytic subsite structure. It is possible that the conservative glycines provide known conformational mobility of the protein and the active site. Methods of molecular modeling were used for analysis of structural substitutions of conservative and non-conservative glycines and their effects on geometry of catalytic site of typical hydrolases. The substitution of glycine(s) for alanine significantly altered the catalytic site structures.  相似文献   

18.
Based on crystal structure analysis of the Serratia nuclease and a sequence alignment of six related nucleases, conserved amino acid residues that are located in proximity to the previously identified catalytic site residue His89 were selected for a mutagenesis study. Five out of 12 amino acid residues analyzed turned out to be of particular importance for the catalytic activity of the enzyme: Arg57, Arg87, His89, Asn119 and Glu127. Their replacement by alanine, for example, resulted in mutant proteins of very low activity, < 1% of the activity of the wild-type enzyme. Steady-state kinetic analysis of the mutant proteins demonstrates that some of these mutants are predominantly affected in their kcat, others in their Km. These results and the determination of the pH and metal ion dependence of selected mutant proteins were used for a tentative assignment for the function of these amino acid residues in the mechanism of phosphodiester bond cleavage by the Serratia nuclease.  相似文献   

19.
A phytase from Escherichia coli, AppA, has been the target of protein engineering to reduce the amount of undigested phosphates from livestock manure by making phosphorous from phytic acid available as a nutrient. To understand the contribution of each amino acid in the active site loop to the AppA activity, alanine and glycine scanning mutagenesis was undertaken. The results of phytase activity assay demonstrated loss of activity by mutations at charged residues within the conserved motif, supporting their importance in catalytic activity. In contrast, both conserved, non-polar residues and non-conserved residues tended to be tolerant to Ala and/or Gly mutations. Correlation analyses of chemical/structural characteristics of each mutation site against mutant activity revealed that the loop residues located closer to the substrate have greater contribution to the activity of AppA. These results may be useful in efficiently engineering AppA to improve its catalytic activity.

Abbreviations: AppA: pH 2.5 acid phosphatase; CSU: contacts of structural units; HAPs: histidine acid phosphatases; SASA: solvent accessible surface area; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SSM: site-saturation mutagenesis; WT: wild type  相似文献   


20.
Doyle SA  Beernink PT  Koshland DE 《Biochemistry》2001,40(14):4234-4241
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate and has negligible activity toward other (R)-malate-type substrates. The S113E mutant of IDH significantly improves its ability to utilize isopropylmalate as a substrate and switches the substrate specificity (k(cat)/K(M)) from isocitrate to isopropylmalate. To understand the structural basis for this switch in substrate specificity, we have determined the crystal structure of IDH S113E in a complex with isopropylmalate, NADP, and Mg(2+) to 2.0 A resolution. On the basis of a comparison with previously determined structures, we identify distinct changes caused by the amino acid substitution and by the binding of substrates. The S113E complex exhibits alterations in global and active site conformations compared with other IDH structures that include loop and helix conformational changes near the active site. In addition, the angle of the hinge that relates the two domains was altered in this structure, which suggests that the S113E substitution and the binding of substrates act together to promote catalysis of isopropylmalate. Ligand binding results in reorientation of the active site helix that contains residues 113 through 116. E113 exhibits new interactions, including van der Waals contacts with the isopropyl group of isopropylmalate and a hydrogen bond with N115, which in turn forms a hydrogen bond with NADP. In addition, the loop and helix regions that bind NADP are altered, as is the loop that connects the NADP binding region to the active site helix, changing the relationship between substrates and enzyme. In combination, these interactions appear to provide the basis for the switch in substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号