首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic nuclear transfer is a cloning technique that shows great promise in the application to regenerative medicine. Although cloned animals are genetically identical to their donor counterparts, abnormalities in phenotype and gene expression are frequently observed. One hypothesis is that the cause of these abnormalities is due to epigenetic aberration. In this report, we focused our analysis on the acetylation of histone H3 at lysine9 (H3K9Ac). Through the use of whole genome tiling arrays and quantitative PCR, we examined this epigenetic event and directly compared and assessed the differences between a cloned mouse (C1) and its parental nuclear donor (D1) counterpart. We identified 4720 regions of chromosomal DNA that showed notable differences in H3K9Ac and report here many genes identified in these hyper- and hypo-acetylated regions. Analysis of a second clone (C2) and its parental donor counterpart (D2) for H3K9Ac showed a high degree of similarity to the C1/D1 pair. This conservation of aberrant acetylation is suggestive of a reproducible epigenetic phenomenon that may lead to the frequent abnormalities observed in cloned mice, such as obesity. Furthermore, we demonstrated Crp which was identified as a hyper-acetylated gene in this study is related to the body mass, suggesting that Crp is a possible candidate of a cause for the abnormal obesity in cloned mice. In this, one of the first reports describing genome-wide epigenetic aberration between parental and nuclear transfer-cloned mammals, we propose that aberrant acetylation of histones (H3K9Ac) flanking promoter regions highly correlates with gene-expression and may itself be an epigenetic change that accounts for variable expression patterns observed in cloned animals.  相似文献   

2.
In human breast cancer MCF 7 cells, the effect of exogenous histone H1 on intracellular calcium ([Ca2+]i) levels was measured using Fura 2AM. The dose and time dependent assessment revealed significant cell killing effect of histone H1 on MCF 7 cells. Histone H1 induced a sustained concentration dependent increase in [Ca2+]i levels in the presence of calcium in the medium, but the increase was reduced in the absence of extra cellular calcium. The effect of histone H1 on intracellular calcium flux measured using 45Ca radiolabel revealed significant inhibition of calcium uptake in endoplasmic reticulum, whereas the rate of uptake was unaltered in the mitochondria. The activities of phospholipase A2 showed a significant transient increase at 1 minute which by the end of 5 minutes decreased, whereas the activities of phospholipase C which showed a transient increase at the end of 1 minute, was maintained at basal levels in histone H1 treated cells compared to control cells. These findings suggest that histone H1 increases [Ca2+]i in MCF 7 cells by stimulating both extra cellular calcium influx and intracellular calcium release at higher concentrations exhibiting cytotoxic effect.  相似文献   

3.
4.
5.
6.
7.
8.

Background

Histone post-translational modifications (PTMs) play an important role in the regulation of the expression of genes, including those involved in cancer development and progression. However, our knowledge of PTM patterns in human tumours is limited.

Methods

MS-based analyses were used to quantify global alterations of histone PTMs in colorectal cancer (CRC) samples. Histones isolated from 12 CRCs and their corresponding normal mucosa by acidic extraction were separated by SDS-PAGE and analysed by liquid chromatography-mass spectrometry.

Results

Among 96 modified peptides, 41 distinct PTM sites were identified, of which 7, 13, 11, and 10 were located within the H2A, H2B, H3, and H4 sequences, respectively, and distributed among the amino-terminal tails and the globular domain of the four histones. Modification intensities were quantified for 33 sites, of which 4 showed significant (p-value ≤ 0.05) differences between CRC tissues and healthy mucosa samples. We identified histone H3 lysine 27 acetylation (H3K27Ac) as a modification upregulated in CRC, which had not been shown previously.

Conclusions

The present results indicate the usefulness of a bottom-up proteomic approach for the detection of histone modifications at a global scale. The differential abundance of H3K27Ac mark in CRC, a PTM associated with active enhancers, suggests its role in regulating genes whose expression changes in CRC.  相似文献   

9.
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.  相似文献   

10.
We decided to study the effect of glucose deprivation on collagen metabolism in MCF7 cells. The incorporation of [3H]‐proline into collagenase‐sensitive and hydroxyproline‐containing proteins was used as an index of collagen synthesis, whereas pulse—chase technique was employed to evaluate the degradation of newly synthesized proteins. The MCF7 cells incubated in high glucose medium synthesized detectable amounts of collagenous proteins. Most of them were found in the cell layer. The shortage of glucose resulted in about 30% reduction in collagen synthesis. The pulse—chase experiments demonstrated that proportionally less collagen was degraded in cultures incubated in low‐glucose than in high‐glucose media.  相似文献   

11.
Oestrogenic activity of parabens in MCF7 human breast cancer cells   总被引:4,自引:0,他引:4  
Parabens (4-hydroxybenzoic acid esters) have been recently reported to have oestrogenic activity in yeast cells and animal models. Since the human population is exposed to parabens through their widespread use as preservatives in foods, pharmaceuticals and cosmetics, we have investigated here whether oestrogenic activity of these compounds can also be detected in oestrogen-sensitive human cells. We report on the oestrogenic effects of four parabens (methylparaben, ethylparaben, n-propylparaben, n-butylparaben) in oestrogen-dependent MCF7 human breast cancer cells. Competitive inhibition of [3H]oestradiol binding to MCF7 cell oestrogen receptors could be detected at 1,000,000-fold molar excess of n-butylparaben (86%), n-propylparaben (77%), ethyl-paraben (54%) and methylparaben (21%). At concentrations of 10(-6)M and above, parabens were are able to increase expression of both transfected (ERE-CAT reporter gene) and endogenous (pS2) oestrogen-regulated genes in these cells. They could also increase proliferation of the cells in monolayer culture, which could be inhibited by the antiestrogen ICI 182,780, indicating that the effects were mediated through the oestrogen receptor. However, no antagonist activity of parabens could be detected on regulation of cell proliferation by 17 beta-oestradiol at 10(-10)M. Molecular modelling has indicated the mode by which paraben molecules can bind into the ligand binding pocket of the crystal structure of the ligand binding domain (LBD) of the oestrogen receptor alpha (ERalpha) in place of 17beta-oestradiol; it has furthermore shown that two paraben molecules can bind simultaneously in a mode in which their phenolic hydroxyl groups bind similarly to those of the meso-hexoestrol molecule. Future work will need to address the extent to which parabens can accumulate in hormonally sensitive tissues and also the extent to which their weak oestrogenic activity can add to the more general environmental oestrogen problem.  相似文献   

12.
Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9 and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9 or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8 and R17 increased biotinylation of K4, K9 and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation.  相似文献   

13.
Histones are subject to a wide variety of post-translational modifications that play a central role in gene activation and silencing. We have used histone modification-specific antibodies to demonstrate that two histone modifications involved in gene activation, histone H3 acetylation and H3 lysine 4 methylation, are functionally linked. This interaction, in which the extent of histone H3 acetylation determines both the abundance and the "degree" of H3K4 methylation, plays a major role in the epigenetic response to histone deacetylase inhibitors. A combination of in vivo knockdown experiments and in vitro methyltransferase assays shows that the abundance of H3K4 methylation is regulated by the activities of two opposing enzyme activities, the methyltransferase MLL4, which is stimulated by acetylated substrates, and a novel and as yet unidentified H3K4me3 demethylase.  相似文献   

14.
15.
We have now found that the most potent, Cpd 5 [2-(2-mercaptoethanol)-3-methyl-1, 4-napthoquinone], inhibits growth of doxorubicin-resistant and doxorubicin-sensitive breast cancer cells (MCF 7r and MCF 7w) in culture. Growth inhibition by Cpd 5 was antagonized by the thiol antioxidants glutathione and cysteine, but not by catalase or superoxide dismutase, suggesting that growth inhibition is probably via conjugation of cellular thiols. In support of this, we found that Cpd 5 inhibited the activity of thiol containing cellular protein tyrosine phosphatase (PTP) enzyme, with consequent induction of various tyrosine phosphoproteins, but not serine or tyrosine phosphoproteins. The tyrosine phosphorylation was also inhibited by exogenous glutathione or cysteine and could be enhanced by depletion of cellular glutathione by BSO. This effect of Cpd 5 on protein tyrosine phosphorylation was highly selective, however. Tyrosine phosphorylation of EGF-R, Erb-B2, and ERK1/2 was increased, but not that of Insulin-R or JNK. ERK1/2 tyrosine phosphorylation and growth inhibition increased with increasing concentrations of Cpd 5. Furthermore, suppression of Cpd 5-mediated ERK1/2 phosphorylation by an ERK-kinase inhibitor antagonized growth inhibition. These results suggest a strong correlation between ERK1/2 phosphorylation by Cpd 5 and growth inhibition. This novel K-vitamin analog thus inhibits MCF 7 cell growth and induces selective protein tyrosine phosphorylation.  相似文献   

16.
17.
18.
In previous studies, we found that progesterone was able to induce the expression of platelet-derived growth factor (PDGF) in human breast cancer MCF7 cells. Knowing that imatinib mesylate targets PDGF receptor tyrosine kinase activity, the aim of the present study was to examine the effects of imatinib on progesterone-treated MCF7 cells. Expression of phosphorylated (activated) platelet-derived growth factor receptor-alpha (PDGFRalpha) was detected in MCF7 cells. Interestingly, phosphorylated-PDGFRalpha expression was significantly downregulated by imatinib. The effects of imatinib on cell growth, apoptosis and migration were then analyzed. Imatinib effectively inhibited anchorage-dependent colony formation, and cell viability as evaluated by MTT assay. Corroborating these findings, a significant increase in the percentage of apoptotic cells was also observed when cells were treated with imatinib. Surprisingly, these inhibitory effects were all enhanced by the presence of progesterone. Cell migration assays did also show a reduction in the migratory capacity after incubation with imatinib. These findings reveal that imatinib acts by decreasing MCF7 cell viability, growth and migration, with concomitant increase in apoptosis. Furthermore, incubation with progesterone seems to prompt cells to the inhibitory action of imatinib, probably by sustaining PDGFRalpha activity. The current study points out imatinib as a possible therapeutic strategy in progesterone-dependent breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号