首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution structure of the self-complementary DNA hexamer 5' d(C-G-T-A-C-G)2 is refined by restrained molecular dynamics in which 192 interproton distances, determined from pre-steady-state nuclear Overhauser enhancement measurements, are incorporated into the total energy of the system in the form of effective potentials. First the method is tested by applying an idealized set of distance restraints taken from classical B-DNA to a simulation starting off from A-DNA and vice versa. It is shown that in both cases the expected transition between A- and B-DNA occurs. Second, a set of restrained molecular dynamics calculations is carried out starting from both A- and B-DNA with the experimental interproton distances for 5' d(C-G-T-A-C-G)2 as restraints. Convergence to the same B-type structure is achieved with the interproton distances equal to the measured values within experimental error. The root-mean-square atomic difference between the two average restrained dynamics structures (less than 1 A) is approximately the same as the root-mean-square fluctuations of the atoms.  相似文献   

2.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

3.
Molecular-mechanical simulations have been carried out on “mismatched base” analogs of the DNA double-helical structure d(CGCGAATTCGCG)2, in which the base pairs CG at the 3 and 10 positions have been replaced by CA, AG, TC, and TG base pairs, as well as an insertion analog in which an extra adenine has been incorporated into one strand of the above structure between bases 3 and 4. The results of these simulations (calculated relative stabilities, structures, and nmr ring-current shifts) have been compared with calorimetric and nmr data. The calculated relative stabilities of the double-helical parent dodecamer and the various “wobble” base pairs qualitatively correlate with the experimental melting temperatures. The base-pairing structure for the GT wobble pair is in agreement with that previously determined from nmr experiments. For the GA base pair, the structure with both bases anti has a slightly more favorable energy from base pairing and stacking than a structure with non-Watson-Crick H-bonding with adenine syn, in agreement with nmr experiments. The CA wobble base is calculated to favor an adenine 6NH2 …? cytosine N3 H-bond over cytosine 4NH2 …? adenine N1, again, in agreement with nmr experiments. There is no definitive experimental data on the TC base pair, but the existence of (somewhat long and weak) H-bonds involving cytosine 4NH2 …? thymine 4CO and cytosine N3 …? thymine HN3 seems reasonable. We find a structure in which the extra adenine base of the insertion analogs sits “inside” the double helix.  相似文献   

4.
We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium" (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of approximately 0.6 mus of simulation for systems containing approximately 24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent approximately 400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed.  相似文献   

5.
The affinity and specificity of a ligand for its DNA site is a function of the conformational changes between the isolated and complexed states. Although the structures of a hydroxypyrrole-imidazole-pyrrole polyamide dimer with 5'-CCAGTACTGG-3' and the trp repressor recognizing the sequence 5'-GTACT-3' are known, the baseline conformation of the DNA site would contribute to our understanding of DNA recognition by these ligands. The 0.74 A resolution structure of a B-DNA double helix, 5'-CCAGTACTGG-3', has been determined by X-ray crystallography. Six of the nine phosphates, two of four bound calcium ions and networks of water molecules hydrating the oligonucleotide have alternate conformations. By contrast, nine of the ten bases have a single, unique conformation with hydrogen atoms visible in most cases. The polyamide molecules alter the geometry of the phosphodiester backbone, and the water molecules mediating contacts in the trp repressor/operator complex are conserved in the unliganded DNA. Furthermore, the multiple conformational states, ions and hydration revealed by this ultrahigh resolution structure of a B-form oligonucleotide are potentially general considerations for understanding DNA-binding affinity and specificity by ligands.  相似文献   

6.
Molecular dynamics (MD) simulations of the DNA duplex d(CCAACGTTGG)(2) were used to study the relationship between DNA sequence and structure. Two crystal simulations were carried out; one consisted of one unit cell containing two duplexes, and the other of two unit cells containing four duplexes. Two solution simulations were also carried out, one starting from canonical B-DNA and the other starting from the crystal structure. For many helicoidal parameters, the results from the crystal and solution simulations were essentially identical. However, for other parameters, in particular, alpha, gamma, delta, (epsilon - zeta), phase, and helical twist, differences between crystal and solution simulations were apparent. Notably, during crystal simulations, values of helical twist remained comparable to those in the crystal structure, to include the sequence-dependent differences among base steps, in which values ranged from 20 degrees to 50 degrees per base step. However, in the solution simulations, not only did the average values of helical twist decrease to approximately 30 degrees per base step, but every base step was approximately 30 degrees, suggesting that the sequence-dependent information may be lost. This study reveals that MD simulations of the crystal environment complement solution simulations in validating the applicability of MD to the analysis of DNA structure.  相似文献   

7.
The electronic structure of d(GG).d(CC), d(CG)2, d(GC)2 which are stacked base pairs in the DNA double helix, are elucidated for both A and B conformations in detail by DV-X alpha cluster calculations. These three DNA double helix fragments are contracted from the same bases, G and C, but the electronic structures of the fragments for both A and B conformations are different from each other characteristically. There are some delicate differences in the admixture of the orbital components and the overlap populations of intra- and inter- strand stacked bases among the stacking isomers. On the other hand, the electronic states of sugars differ in the 5'-3' direction, but are not almost dependent on stacked base pairs.  相似文献   

8.
The two helical parameters n and h where n is the number of nucleotide residues per turn and h is the height per nucleotide residue have been evaluated for single stranded helical polynucleotide chains comprising C(3') -endo and C(2') endo class of nucleotides. The helical parameters are found to be especially sensitive to the C(4')-C(3') (sugar pucker) and the C(4')-C(5') torsions. The (n-h) plots display only one important helix forming domain for each class of nucleotides characterized by the sugar pucker and the C(4')-C(5') torsion. A correlation between the (n-h) plots and the known RNA (A,A') and DNA (A,B,C) helical forms has been established. It is found that all forms of helices except the C-DNA possess a favorable combination of P-O torsions. The analysis of the (n-h) plots suggests that C-DNA can have a conformation very similar to B-DNA. Although the (n-h) plots predict the stereochemical possibility of both right-handed and left-handed helices, nucleic acids apparently prefer right-handed conformation because of the energetics associated with the sugar-phosphate backbone and the base.  相似文献   

9.
A study of the binding of the antibacterial agent trimethoprim to Escherichia coli dihydrofolate reductase was carried out using energy minimization techniques with both a full, all-atom valence force field and a united atom force field. Convergence criteria ensured that no significant structural or energetic changes would occur with further minimization. Root-mean-square (RMS) deviations of both minimized structures with the experimental structure were calculated for selected regions of the protein. In the active site, the all-atom minimized structure fit the experimental structure much better than did the united atom structure. To ascertain what constitutes a good fit, the RMS deviations between crystal structures of the same enzyme either from different species or in different crystal environments were compared. The differences between the active site of the all-atom minimized structure and the experimental structure are similar to differences observed between crystal structures of the same protein. Finally, the energetics of ligand binding were analyzed for the all-atom minimized coordinates. Strain energy induced in the ligand, the corresponding entropy loss due to shifts in harmonic frequencies, and the role of specific residues in ligand binding were examined. Water molecules, even those not in direct contact with the ligand, were found to have significant interaction energies with the ligand. Thus, the inclusion of at least one shell of waters may be vital for accurate simulations of enzyme complexes.  相似文献   

10.
The structure and physical properties of 2'-sugar substituted O -(2-methoxyethyl) (MOE) nucleic acids have been studied using molecular dynamics simulations. Nanosecond simulations on the duplex MOE[CCAACGTTGG]-r[CCAACGUUGG] in aqueous solution have been carried out using the particle mesh Ewald method. Parameters for the simulation have been developed from ab initio calculations on dimethoxyethyl fragments in a manner consistent with the AMBER 4.1 force field database. The simulated duplex is compared with the crystal structure of the self-complementary duplex d[GCGTATMOEACGC]2, which contains a single modification in each strand. Structural details from each sequence have been analyzed to rationalize the stability imparted by substitution with 2'- O -(2-methoxyethyl) side chains. Both duplexes have an A-form structure, as indicated by several parameters, most notably a C3' endo sugar pucker in all residues. The simulated structure maintains a stable A-form geometry throughout the duration of the simulation with an average RMS deviation of 2.0 A from the starting A-form structure. The presence of the 2' substitution appears to lock the sugars in the C3' endo conformation, causing the duplex to adopt a stable A-form geometry. The side chains themselves have a fairly rigid geometry with trans , trans , gauche +/- and trans rotations about the C2'-O2', O2'-CA', CA'-CB' and CB'-OC' bonds respectively.  相似文献   

11.
Netropsin is bound to the DNA decamer d(CCCCCIIIII)2, the C-4 bromo derivative d(CCCBr5CCIIIII)2and the C-2 bromo derivative d(CBr5CCCCIIIII)2in a novel 2:1 mode. Complexes of the native decamer and the C-4 bromo derivative are isomorphous, space group P1, unit cell dimensions a = 32.56 A (32.66), b = 32.59 A (32.77), c = 37.64 A (37.71), alpha = 86.30 degrees (86.01 degrees), beta = 84.50 degrees (84.37 degrees), gamma = 68.58 degrees (68.90 degrees) with two independent molecules (A and B) in the asymmetric unit (values in parentheses are for the derivative). The C-2 bromo derivative is hexagonal P61, unit cell dimensions a = b = 32.13 A, c = 143.92, gamma = 120 degrees with one molecule in the asymmetric unit. The structures were solved by the molecular replacement method. The novelty of the structures is that there are two netropsins bound end-to-end in the minor groove of each B-DNA decamer which has nearly a complete turn. The netropsins are held by hydrogen bonding interactions to the base atoms and by sandwiching van der Waal's interactions from the sugar-phosphate backbones of the double helix similar to every other drug.DNA complex. Each netropsin molecule spans approximately 5 bp. The netropsins refined with their guanidinium heads facing each other at the center, although an orientational disorder for the netropsins cannot be excluded. The amidinium ends stretch out toward the junctions and bind to the adjacent duplexes in the columns of stacked symmetry-related complexes. Both cationic ends of netropsin are bridged by water molecules in one of the independent molecules (molecule A) of the triclinic structures and also the hexagonal structure to form pseudo-continuous drug.decamer helices.  相似文献   

12.
The presence of an N-(2-deoxy-beta-D-erythro-pentofuranosyl) formamide (F) residue, a ring fragmentation product of thymine, in a frameshift context in the sequence 5'-d-(AGGACCACG)*d(CGTGGFTCCT) has been studied by 1H and 31P nuclear magnetic resonance (NMR) and molecular dynamics. Two-dimensional NMR studies show that the formamide residue, whether the cis or trans isomer, is rotated out of the helix and that the bases on either side of the formamide residue in the sequence, G14 and T16, are stacked over each other in a way similar to normal B-DNA. The cis and trans isomers were observed in the ratio 3:2 in solution. Information extracted from 31P NMR data reveal a modification of the phosphodiester backbone conformation at the extrahelical site, which is also observed during the molecular dynamics simulations.  相似文献   

13.
All‐atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all‐atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example, excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles, and dimer contacts approximate those of the NMR‐derived structure, although the detailed contact surface remains off‐set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The structure of the complex formed between d(CGTACG)(2) and the antitumor agent 9-amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide has been solved to a resolution of 1.6 A using X-ray crystallography. The complex crystallized in space group P6(4) with unit cell dimensions a = b = 30.2 A and c = 39.7 A, alpha = beta = 90 degrees, gamma = 120 degrees. The asymmetric unit contains a single strand of DNA, 1. 5 drug molecules, and 29 water molecules. The final structure has an overall R factor of 19.3%. A drug molecule intercalates between each of the CpG dinucleotide steps with its side chain lying in the major groove, and the protonated dimethylamino group partially occupies positions close to ( approximately 3.0 A) the N7 and O6 atoms of guanine G2. A water molecule forms bridging hydrogen bonds between the 4-carboxamide NH and the phosphate group of the same guanine. Sugar rings adopt the C2'-endo conformation except for cytosine C1 which moves to C3'-endo, thereby preventing steric collision between its C2' methylene group and the intercalated acridine ring. The intercalation cavity is opened by rotations of the main chain torsion angles alpha and gamma at guanines G2 and G6. Intercalation perturbs helix winding throughout the hexanucleotide compared to B-DNA, steps 1 and 2 being unwound by 8 degrees and 12 degrees, respectively, whereas the central TpA step is overwound by 17 degrees. An additional drug molecule, lying with the 2-fold axis in the plane of the acridine ring, is located at the end of each DNA helix, linking it to the next duplex to form a continuously stacked structure. The protonated N,N-dimethylamino group of this "end-stacked" drug hydrogen bonds to the N7 atom of guanine G6. In both drug molecules, the 4-carboxamide group is internally hydrogen bonded to the protonated N-10 atom of the acridine ring. The structure of the intercalated complex enables a rationalization of the known structure-activity relationships for inhibition of topoisomerase II activity, cytotoxicity, and DNA-binding kinetics for 9-aminoacridine-4-carboxamides.  相似文献   

15.
A complete set of dA and T analogues designed for the study of protein DNA interactions has been prepared. These modified bases have been designed by considering the groups on the dA and T bases that are accessible to proteins when these bases are incorporated into double-helical B-DNA [Seeman, N. C., Rosenberg, J. M., & Rich, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 804-808]. Each of the positions on the two bases, having the potential to interact with proteins, have been subject to nondisruptive, conservative change. Typically a particular group (e.g., the 6-NH2 of dA or the 5-CH3 of T) has been replaced with a hydrogen atom. Occasionally keto groups (the 2- and 4-keto oxygen atoms of T) have been replaced with sulfur. The base set has been incorporated into the self-complementary dodecamer d(GACGATATCGTC) at the central d(ATAT) sequence. Melting temperature determination shows that the modified bases do not destabilize the double helix. Additionally, circular dichroism spectroscopy shows that almost all the altered bases have very little effect on overall oligodeoxynucleotide conformation and that most of the modified oligomers have a B-DNA type structure. d(GATATC) is the recognition sequence for the EcoRV restriction modification system. Initial rate measurements (at a single oligodeoxynucleotide concentration of 20 microM) have been carried out with both the EcoRV restriction endonuclease and modification methylase. This has enabled a preliminary identification of the groups of the dA and T bases within the d(GATATC) sequence that make important contacts to both proteins.  相似文献   

16.
Crystal and molecular structure of a DNA fragment: d(CGTGAATTCACG)   总被引:5,自引:0,他引:5  
The crystal structure of the dodecanucleotide d(CGTGAATTCACG) has been determined to a resolution of 2.7 A and refined to an R factor of 17.0% for 1532 reflections. The sequence crystallizes as a B-form double helix, with Watson-Crick base pairing. This sequence contains the EcoRI restriction endonuclease recognition site, GAATTC, and is flanked by CGT on the 5'-end and ACG on the 3'-end, in contrast to the CGC on the 5'-end and GCG on the 3'-end in the parent dodecamer d(CGCGAATTCGCG). A comparison with the isomorphous parent compound shows that any changes in the structure induced by the change in the sequence in the flanking region are highly localized. The global conformation of the duplex is conserved. The overall bend in the helix is 10 degrees. The average helical twist values for the present and the parent structures are 36.5 degrees and 36.4 degrees, respectively, corresponding to 10 base pairs per turn. The buckle at the substituted sites are significantly different from those seen at the corresponding positions in the parent dodecamer. Step 2 (GpT) is underwound with respect to the parent structure (27 degrees vs 36 degrees) and step 3 (TpG) is overwound (34 degrees vs 27 degrees). There is a spine of hydration in the narrow minor groove. The N3 atom of adenine on the substituted A10 and A22 bases are involved in the formation of hydrogen bonds with other duplexes or with water; the N3 atom of guanine on G10 and G22 bases in the parent structure does not form hydrogen bonds.  相似文献   

17.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

18.
The structure and thermal stability of a hetero chiral decaoligodeoxyribonucleotide duplex d(C1m8 G2C3G4C5LG6LC7G8C9G10)d(C11m8G12C13G14C15LG16LC17G18C19G20) (O1) with two contiguous pairs of enantiomeric 2'-deoxy-L-ribonucleotides (C5LG6L/C15LG16L) at its centre and an 8-methylguanine at position 2/12 was analysed by circular dichroism, NMR and molecular modelling. O1 resolves in a left-handed helical structure already at low salt concentration (0.1 M NaCl). The central L2-sugar portion assumes a B* left-handed conformation (mirror-image of right-handed B-DNA) while its flanking D4-sugar portions adopt the known Z left-handed conformation. The resulting Z4-B2*-Z4 structure (left-handed helix) is the reverse of that of B4-Z2*-B4 (right-handed helix) displayed by the nearly related decaoligodeoxyribonucleotide d(mC1G2mC3G4C5L G6LmC7G8mC9G10)2, at the same low salt concentration (0.1 M NaCl). In the same experimental conditions, d(C1m8G2C3G4C5G6C7G8C9G10)2 (O2), the stereoregular version of O1, resolves into a right-handed B-DNA helix. Thus, both the 8-methylguanine and the enantiomeric step CLpGL at the centre of the molecule are needed to induce left-handed helicity. Remarkably, in the various heterochiral decaoligodeoxyribonucleotides so far analysed by us, when the central CLpGL adopts the B* (respectively Z*) conformation, then the adjacent steps automatically resolves in the Z (respectively B) conformation. This allows a good optimisation of the base-base stackings and base-sugar van der Waals interactions at the ZB*/B*Z (respectively BZ*/Z*B) junctions so that the Z4-B2*-Z4 (respectively B4-Z2*-B4) helix displays a Tm (approximately 65 degrees C) that is only 5 degrees C lower than the one of its homochiral counterpart. Here we anticipate that a large variety of DNA helices can be generated at low salt concentration by manipulating internal factors such as sugar configuration, duplex length, nucleotide composition and base methylation. These helices can constitute powerful tools for structural and biological investigations, especially as they can be used in physiological conditions.  相似文献   

19.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

20.
Derivatives of the oligomer [d(GGAATTCC)]2 with 5' (5'-P), 3' (3'-P) and both 5' and 3' (5',3'-P2) terminal phosphate groups have been synthesized and studied by temperature dependent UV and NMR spectroscopic methods. Thermodynamic studies of the helix to strand transition indicate that addition of 3' phosphate groups has very little effect on the delta G degree for helix formation at 37 degrees C while addition of 5' phosphate groups adds approximately -0.5 kcal/mole to the delta G degree for duplex formation. The helix stabilization by 5' phosphate groups occurs at salt concentrations of 0.1 M and above, and is primarily enthalpic in origin. Tm studies as a function of ionic strength also indicate that the oligomers fall into two groups with the parent and 3'-P derivatives being similar but less stable than the 5'-P and 5',3'-P2 derivatives. Imino proton and 31P NMR studies also divide the oligomers into these same two groups based on spectral comparisons and temperature induced chemical shift and linewidth changes. 31P NMR analysis suggests that addition of 5' phosphate groups results in a small change in phosphodiester torsional angles in the g,t to g,g direction, indicating improved base stacking at the 5' end of the modified oligomer. No such changes are seen at the 3' end of the oligomer on adding 3' phosphate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号