首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In a random collection of mit mutations of the yeast strain 777-3A we find that deletions are exceptionally frequent in the OXI3 gene, a large mosaic gene coding for subunit I of cytochrome oxidase. About 10% of all oxi3 mutants carry the same macro-deletion, del-A, extending from the 5 non-translated leader of OXI3 to intron 5b of this gene. Determination of the respective wild-type sequences and of the del-A junction sequence revealed that the end-points of the deletion are in two GC clusters with 31 by sequence identity which are located at a distance of 11.3 kb. We speculate that not only the sequence identity of the two GC clusters but also the palindromic structure of these putatively mobile elements of yeast mitochondrial DNA (mtDNA) plays a role in deletion formation.  相似文献   

2.
Mitochondrial protein synthesis was analyzed in the yeast mit? mutants of Saccharomycescerevisiae which specifically lack cytochrome c oxidase. [3H]leucine labeled polypeptides synthesized in yeast OXI 3 mutant were analyzed by means of immunoprecipitation and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). When compared to control, subunit I was not detectable. This result was substantiated by growing OXI 3 mutant in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Under such conditions SDS-PAGE analysis of [3H]leucine labeled immunoprecipitate shows the absence of subunit I. These data show that the OXI 3 locus contains the structural gene for cytochrome c oxidase subunit I.  相似文献   

3.
Summary Fifty eight mitochondrial mutants (p + mit- mutants), all deficient in cytochrome oxidase activity and previously assigned to the genetic region oxi3 on the mitochondrial DNA, were mapped by the method of petite deletion mapping.This procedure resulted in the identification of at least twenty one different classes of oxi3 mutants, which could be arranged in a linear order.Moreover, it provided a set of twenty three p - petite mutants, each containing a differentially deleted mit DNA segment included in the oxi3 region. The two sets of mutants, p + oxi3 - and p - oxi3 +, will be of interest for a further genetic and physical analysis of this mitochondrial DNA segment which spans over about ten thousand base pairs and controls the subunit I of cytochrome oxidase.  相似文献   

4.
Summary An approach for the screening of mit - mutants, the isolation and preliminary classification of a series of such mutants is reported. Loss and retention of 8 mit - and 6 drug r markers in mitDNA was analyzed in populations of rho- clones derived from four yeast strains. The populations studied constitute a representative fraction of the rho- petites formed during growth at 35° C under the influence of mutation tsp-25 which is in common to the four strains. The majority of the rho- clones retained several of the markers studied. Depending on the marker regarded retention frequencies between 15% (oxi3) and 45% (oli1, cob) were observed. Loss of one and retention of the other of a pair of markers was determined in all rho- clones of the four populations. The frequencies of marker separation by rho- deletion thus obtained are assumed to reflect the distance between markers on the mitochondrial genome: the higher the frequency of separation the longer the distance between two markers. Based on these frequencies a unique order of markers on a circular map was determined. Positions of markers on a scale from 0 to 100 were found to be: cap/ery (0) — olil (16) — cob1-1354 (21) — ana101 (22) — cob2-1625 (24) — oli2 (35) — pho1 (40) — oxi3-2501 (44) — oxi3-3771 (47) — par (65) — oxi2 (79) — oxil (87) tms8 (93) —cap (100). The relevance of this map as to the faithful representation of the topology of gene loci on mitDNA is discussed. Correlation of retention frequencies of markers to their map positions reveals a pronounced polarity: mitDNA segments carrying the cob-oli1 segment prevail whereas segments retaining oxi3 are the least frequent.  相似文献   

5.
Summary Petite deletion mapping has been carried out for the Oli 2 region of the mitochondrial genome of Saccharomyces cerevisiae to produce a fine structure genetic map. Previously unlocated mit - mutants together with the drug resistant loci Oli 2 and Oss 1 have been ordered between the cytochrome oxidase and apocytochrome b genes.As a result of this study a series of isogenic p - clones have been isolated spanning the Oli 2 region.  相似文献   

6.
OXI mutants in Saccharomyces cerevisiae lack a functional cytochrome c oxidase. Wild type and OXI mutants were grown in the presence of radioactive delta-amino[14C]levulinic acid, a precursor of porphyrin and heme, and [3H]mevalonic acid, a precursor of the alkyl side-chain of heme a. SDS polyacrylamide gel electrophoresis of the delipidated mitochondria showed that delta-amino[14C]levulinic acid was distributed into three bands migrating in the regions of Mr 28 000, 13 500, and 10 000, while [3H]mevalonic acid was found in a single band with apparent Mr of 10 000. The immunoprecipitates obtained by incubating the solubilized mitochondria of any OXI mutant with antibodies against cytochrome c oxidase, showed, after delipidation, a high specific radioactivity due to delta-amino[14C]levulinic acid and [3H]mevalonic acid. This suggested that a prophyrin a was present in all these OXI mutants. HCl fractionation confirmed the presence of porphyrin a in the apooxidase of these mutants. Atomic absorption spectra of the immunoprecipitate of cytochrome c oxidase showed that copper was not detectable in the mutant OXI IIIa which lacked subunit 1, but was present in the mutant OXI IIIb, which exhibited a minor alteration in the electrophoretic mobility of subunit 1. In OXI I and II mutants there was a 50% reduction in the amount of copper in the immunoprecipitated cytochrome c oxidase. These observations may be interpretable as follows: (1) alterations in polypeptide biosynthesis due to the OXI mutations lead to an improper configuration of cytochrome c oxidase, so that ferrochelatase cannot transfer iron into porphyrin a; (2) subunit I is the binding site for copper, but the mutations in subunits II and III alter the binding site of one of the two copper atoms in subunit I.  相似文献   

7.
In Saccharomyces cerevisiae the mitochondrial gene responsible for the specification of apocytochrome b (cob-box) is believed to consist of both coding and intervening sequences. Mutations in the latter give rise to pleiotropic phenotypes in vivo, lacking not only cytochrome b but also subunit I of cytochrome oxidase, and producing sets of novel polypeptides. The experiments described here have examined 15 different mit? mutants in this region and demonstrate that these results are faithfully reproduced by isolated mitochondria in vitro. This inference also applies to other types of mutational lesions in coding segments of the cob-box gene and of the gene oxi3, responsible for the specification of subunit I.  相似文献   

8.
Summary In the preceding paper of this series (Dujardin et al. 1980a) we described general methods of selecting and genetically characterizing suppressor mutations that restore the respiratory capacity of mit - mitochondrial mutations. Two dominant nuclear (NAM1-1 and NAM2-1) and one mitochondrial (mim2-1) suppressors are more extensively studied in this paper. We have analysed the action spectrum of these suppressors on 433 mit - mutations located in various mitochondrial genes and found that they preferentially alleviate the effects of mutations located within intron open reading frames of the cob-box gene. We conclude that these suppressors permit the maturation of cytochrome b mRNA by restoring the synthesis of intron encoded protein(s) catalytically involved in splicing i.e. mRNA-maturase(s) (cf. Lazowska et al. 1980). NAM1-1 is allele specific and gene non-specific: it suppresses mutations located within different introns. NAM2-1 and mim2-1 are intron-specific: they suppress mutations all located in the same (box7) intron of the cobbox gene. Analyses of cytochrome absorption spectra and mitochondrial translation products of cells in which the suppressors are associated with various other mit - mutations show that the suppressors restore cytochrome b and/or cytochrome oxidase (cox 1) synthesis, as expected from their growth phenotype. This suppression is, however, only partial: some new polypeptides characteristic of the mit - mutations can be still detected in the presence of suppressor. Interestingly enough when box7 specific suppressors NAM2-1 and mim2-1 are associated with a complete cob-box deletion (leading to a total deficiency of cytochrome b and oxidase) partial restoration of cox I synthesis is observed while cytochrome b is still totally absent. These results show that in strains carrying NAM2-1 or mim2-1 the presence of cytochrome b gene is no longer required for the expression of the oxi3 gene pointing out to the possibility of a mutational switch-on of silent genes, whether mitochondrial, mim2-1, or nuclear, NAM2-1. This switch-on would permit the synthesis of an active maturase acting as a substitute for the box7 maturase in order to splice the cytochrome b and oxidase mRNAs.  相似文献   

9.
Eight respiratory-deficient mutants ofChlamydomonas reinhardtii have been isolated after mutagenic treatment with acriflavine or ethidium bromide. They are characterized by their inability to grow or their very reduced growth under heterotrophic conditions. One mutation (Class III) is of nuclear origin whereas the seven remaining mutants (Classes I and II) display a predominantly paternalmt - inheritance, typical of mutations residing in the mitochondrial DNA. Biochemical analysis has shown that all mutants are deficient in the cyanide-sensitive cytochrome pathway of the respiration whereas the alternative pathway is still functional. Measurements of complexes II + III (antimycin-sensitive succinate-cytochromec oxido-reductase) and complex IV (cytochromec oxidase) activities allowed to conclude that six mutations have to be localized in the mitochondrial apocytochromeb (COB) gene, one in the mitochondrial cytochrome oxidase subunit I (COI) gene and one in a nuclear gene encoding a component of the cytochrome oxidase complex. By using specific probes, we have moreover demonstrated that five mutants (Class II mutants) contain mitochondrial DNA molecules deleted in the terminal end containing the COB gene and the telomeric region; they also possess dimeric molecules resulting from end-to-end junctions of deleted monomers. The two other mitochondrial mutants (Class I) have no detectable gross alteration. Class I and Class II mutants can also be distinguished by the pattern of transmission of the mutation in crosses.Anin vivo staining test has been developed to identify rapidly the mutants impaired in cyanide-sensitive respiration.  相似文献   

10.
Viability ofpetite-negative yeast, such asKluyveromyces lactis, is dependent on functional mitochondrial genome encoding essential components of both mitochondrial protein synthesizing system and oxidative phosphorylation. We have isolated several nuclear mutants impaired in mitochondrial functions that were unable to grow on non-fermentable carbon and energy sources. They were used for the isolation and molecular characterization of the three genes encoding apocytochromec, apocytochromec 1 and the protein involved in the biogenesis of cytochrome oxidase. All cytochrome-deficient mutants were viable and did not survive the ethidium bromide mutagenesis.Petite-positiveSaccharomyces cerevisiae requires intact mitochondrial genome when its phosphatidylglycerolphosphate synthase was inactivated due to mutation in thePEL1 gene. UsingPEL-lacZ fusion genes it was demonstrated that Pel1p is a mitochondrial protein (expressed in response tomyo-inositol and choline). Thepel1 mutant was deficient in phosphatidylglycerol (PG) and cardiolipin (CL) and itsrho /rho 0 mutants grew extremely slowly on complex medium with glucose. Under the same conditions the growth rate of thecrd1 rho double mutants was similar to that of its parentcrd1 mutant deficient in cardiolipin synthase and accumulating PG. The results demonstrate that thepetite negativity in yeast is not dependent on an intact respiratory chain or functional oxidative phosphorylation. The presence of the negatively charged PG or CL seems to be essential for the maintenance of specific mitochondrial functions required for the normal mitotic growth of yeast cells. Presented at theInternational Conference on Recent Problems in Microbiology and Immunology, Košice (Slovakia), 13–15 October 1999.  相似文献   

11.
Analysis of the cytochrome spectra of a mitochondrial mutant ofCandida utilis showed complete absence of apocytochromeb; this suggests a certain degree of damage, probably a small deletion in themit genes of mitochondrial DNA. Oxygen uptake measurements with and without cyanide of the respiratory-competentCandida utilis parent strain and its derivative mitochondrial mutant P1,2 indicated the absence of the cyanide-sensitive or normal respiratory chain and a lowered rate of cyanide-insensitive or alternate respiration. Mitochondrial profiles and distribution of parental and mutant cells account for an altered mitochondrial DNA which affects mitochondria in the latter cell shape and function. The mutant cells ofCandida utilis were considered asmit mutants from the observations reported here.  相似文献   

12.
13.
Summary Mitochondrial and nuclear mutants resistant to myxothiazol were isolated and characterized. The mitochondrial mutants could be assigned to two loci, myx1 and myx2, by allelism tests. The two loci map in the box region, the split gene coding for apocytochrome b. Locus myx1 maps in the first exon (box4/5) whereas myx2 maps in the last exon (box6). The nuclear mutants could be divided into three groups: two groups of recessive mutations and one of dominant mutations. Respiration of isolated mitochondria from mitochondrial mutants is resistant to myxothiazol. These studies support the conclusion that myxothiazol is an inhibitor of the respiratory chain of yeast mitochondria. The site of action of myxothiazol is mitochondrial cytochrome b.Abbreviations box mosaic gene coding for apocytochrome b - cyt b cytochrome b - MIC minimum inhibitory concentration - MNNG N-methyl-N'-nitro-N-nitrosoguanidine - Myx R/Myx S allelte forms of a locus conferring myxothiazol resistance - myx1, myx2 mitochondrial loci conferring myxothiazol resistance - rho +/rho grande/cytoplasmic petite - rho 0 cytoplasmic petite that is deleted of all mitochondrial DNA  相似文献   

14.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

15.
Inhibition of hydrogen transfer between NADH and Co Q by rotenone or amytal in salivary gland cells of Drosophila hydei maintained in vitro, results in the activation of a particular group of four loci in the polytene chromosomes (puff formation). The response of these loci to the same treatment is enhanced if Na-malonate is present in the incubation medium. — Three of the loci become active if the glands are kept in a medium supplied with antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide (H QNO), specific inhibitors of the electron transfer between cytochromes b and c. — It was established that a temperature treatment and DNP raise oxygen consumption of the cells to a certain level. Following the same treatments of glands supplied with Na-malate and Na-succinate the raise in oxygen consumption attains a significantly higher level. Under these conditions no response is observed at the genome level. — Whereas DNP, which uncouples oxidative phosphorylation and enhances the respiratory chain reactions, does induce the initiation of puff formation, oligomycin, which inhibits oxidative phosphorylation and suppresses the respiratory chain reactions, is ineffective in initiating puff formation at the specific loci. However, if oligomycin is supplied to the medium in combination with KCN which inhibits the cytochrome oxidase activity, three of the four loci become active. — The presence in the medium of substances which may act as hydrogen acceptors, e.g. menadione or methylene blue, can also result in activation of the chromosome loci. — These results are interpreted as indications for the existence of a regulatory mechanism between mitochondrial respiratory metabolism and the activity of a particular group of genome loci.  相似文献   

16.
Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit I sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (5.9–30.8%) was usually greater than in cytochrome c oxidase subunit I (2.5–18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.  相似文献   

17.
Incubation of freshly isolated rat liver mitochondria in the presence of oxygen free radical generating hypoxanthine —xanthine oxidase system led to swelling of mitochondria as measured by the change in optical density, which was reversed by the addition of superoxide dismutase. O2 in the presence of CaCl2 enhanced the peroxidative decomposition of mitochondrial membrane lipids along with swelling of the organelle. Free radical generation led to enhancement of monoamine oxidase activity while glutathione peroxidase and cytochrome c oxidase were inhibited. Tertbutyl hydroperoxide (t-BHP) caused mitochondrial swelling through oxidative stress. Incorporation of ruthenium red, which is a Ca2+ transport blocker, during assay abolished peroxidative membrane damage and swelling. Dithiothreitol (DTT) accorded protection against t-BHP induced mitochondrial swelling. The above in vitro data suggest a possible interrelationship of active oxygen species, membrane damage and calcium dynamics.  相似文献   

18.
Summary This paper consolidates and refines the physical map of genetic loci previously established in our laboratory, by molecular analysis of seven genetically characterized new petites (deletion mutants of mtDNA). A modified DNA-DNA hybridization procedure employing filters simultaneously bound with mtDNA from two different petites has been used to measure the overlaps in mtDNA sequences between the different petite mutants.Thus, by analysis of three new petites carrying the antibiotic-resistance loci, ery1, cap1 and par1 on their mitochondrial genomes, it has now been possible to improve our estimation of the maximum distance between the cap1 and ery1 loci. The cap1, ery1 loci, and the 21S ribosomal RNA gene have now been mapped within 5 units in the same region (map position 0 to 5 units). Similarly, by analysis of four new petites carrying the O II and/or par1 loci on their mtDNAs, the map position of the O II locus is also more accurately determined within 2 units in a region (map position 34 to 36 units) between the par1 and ana1 loci. The positions of other loci including par1, the 15S ribosomal RNA gene, and some mit - loci are also discussed.We have thus extended our library of genetically and molecularly defined petite mutants, resulting in a set of petites having overlapping regions distributed throughout the entire wild-type mitochondrial genome, consistent with the idea that yeast mtDNA is physically circular.  相似文献   

19.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

20.
Summary In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain ana r -14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.Abbreviations cox1, cox2, cox3 genes encoding subunits 1, 2 and 3 of cytochrome - c oxidase - cob gene encoding apocytochrome b - cox1I1, cox1I2a, cox1I2b, cox1I3 introns in cox1 - cox1Ix +/– indicates the presence or absence of the intron either in the native gene or after intron DNA excision - cox1Ix is a deletion in the intron leading to respiratory deficiency  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号