首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
Summary Data regarding the degree of energy conservation as determined by the and the highest rates of metabolite production reported for various micro-organisms have been collated and analysed. The results have indicated that the highest rates of metabolite production occur in micro-organisms possessing low efficiencies of energy conservation. Moreover, in the case of exopolysaccharide production the oxidation state of the polymer is inversely related to the value of the producing organism. In general, the rate of ATP turnover associated with exopolysaccharide production or the potential rate associated with over-production of other metabolites is inversely related to the value of the producing organism. Analysis of current production rates for a range of metabolites suggests that there is scope for major improvements of existing processes by careful selection of appropriate micro-organisms.  相似文献   

2.
3.
Screening microbial secondary metabolites is an established method to identify novel biologically active molecules. Preparation of biological screening samples from microbial fermentation extracts requires growth conditions that promote synthesis of secondary metabolites and extraction procedures that capture the secondary metabolites produced. High-performance liquid chromatography (HPLC) analysis of fermentation extracts can be used to estimate the number of secondary metabolites produced by microorganisms under various growth conditions but is slow. In this study we report on a rapid (approximately 1 min per assay) surrogate measure of secondary metabolite production based on a metabolite productivity index computed from the electrospray mass spectra of samples injected directly into a spectrometer. This surrogate measure of productivity was shown to correlate with an HPLC measure of productivity with a coefficient of 0.78 for a test set of extracts from 43 actinomycetes. This rapid measure of secondary metabolite productivity may be used to identify improved cultivation and extraction conditions by analyzing and ranking large sets of extracts. The same methods may also be used to survey large collections of extracts to identify subsets of highly productive organisms for biological screening or additional study.  相似文献   

4.
《Fungal biology》2021,125(12):999-1008
The synthesis of various unique secondary metabolites by lichens is the result of mutualistic symbiotic association between the mycobiont and autotrophic photobiont. The function of these compounds and causal factors for their production are not fully understood. This paper examines the effect of heavy-metal bioaccumulation and physiological parameters related to photosynthesis and carbon metabolism on the production of lichen substances in hyperaccumulator Diploschistes muscorum. The obtained model of secondary metabolite concentrations in the thalli demonstrates that the carbon source provided by the photobiont and associated polyols produced by the mycobiont have positive impact on the production; on the contrary, the increased intracellular load of heavy metals and excessive loss of cell membrane integrity adversely affected secondary metabolite contents. Additionally, the production of secondary metabolites appears to be more dependent on intracellular metal concentrations than on soil pollution level. To compensate for metal stress, both efficient functioning of algal component and sufficient production of secondary metabolites are required. The balanced physiological functioning of mycobiont and photobiont constitutes the complex protective mechanism to alleviate the harmful effects of heavy metal stress on primary and secondary metabolism of lichens.  相似文献   

5.
The physiology of Aspergillus niger was studied under different aeration conditions. Five different aeration rates were investigated in batch cultivations of A. niger grown on xylose. Biomass, intra- and extra-cellular metabolites profiles were determined and ten different enzyme activities in the central carbon metabolism were assessed. The focus was on organic acid production with a special interest in succinate production. The fermentations revealed that oxygen limitation significantly changes the physiology of the micro-organism. Changes in extra cellular metabolite profiles were observed, that is, there was a drastic increase in polyol production (erythritol, xylitol, glycerol, arabitol, and mannitol) and to a lesser extent in the production of reduced acids (malate and succinate). The intracellular metabolite profiles indicated changes in fluxes, since several primary metabolites, like the intermediates of the TCA cycle accumulated during oxygen limitation (on average three fold increase). Also the enzyme activities showed changes between the exponential growth phase and the oxygen limitation phase. In general, the oxygen availability has a significant impact on the physiology of this fungus causing dramatic alterations in the central carbon metabolism that should be taken into account in the design of A. niger as a succinate cell factory.  相似文献   

6.
Bioactive substances (BAS) of plant origin are known to play a very important role in modern medicine. Their use, however, is often limited by availability of plant resources and may jeopardize rare species of medicinal plants. Plant cell cultures can serve as a renewable source of valuable secondary metabolites. To the date, however, only few examples of their commercial use are known. The main reasons for such a situation are the insufficient production of secondary metabolites and high cultivation costs. It is possible to increase the performance of plant cell cultures by one or two orders of magnitude using traditional methods, such as selection of highly productive strains, optimization of the medium composition, elicitation, and addition of precursors of secondary metabolite biosynthesis. The progress in molecular biology methods brought about the advent of new means for increasing of the productivity of cell cultures based on the methods of metabolic engineering. Thus, overexpression of genes encoding the enzymes involved in the synthesis of the target product or, by contrast, repression of these genes significantly influences the cell biosynthetic capacity in vitro. Nevertheless, the attempts of the production of many secondary metabolites in plant cell culture were unsuccessful so far, probably due to the peculiarities of the cell culture as an artificial population of plant somatic cells. The use of plant organ culture or transformed roots (hairy root) could turn to be a considerably more efficient solution for this problem. The production of plant-derived secondary metabolites in yeast or bacteria transformed with plant genes is being studied currently. Although the attempts to use metabolic engineering methods were not particularly successful so far, new insights in biochemistry and physiology of secondary metabolism, particularly in regulation and compartmentation of secondary metabolite synthesis as well as mechanisms of their transport and storage make these approaches promising.  相似文献   

7.
Fermentation of Peptides by Bacteroides ruminicola B(1)4   总被引:2,自引:0,他引:2  
The maximum growth rate of Bacteroides ruminicola B(1)4 was significantly improved when either Trypticase or acetate and C(4)-C(5) fatty acids were added to defined medium containing macrominerals, microminerals, vitamins, hemin, cysteine hydrochloride, and glucose. The organism was unable to grow with peptides as the sole energy source, but growth yields from glucose were significantly improved when Trypticase was added to batch cultures containing basal medium, acetate, and C(4)-C(5) volatile fatty acids. During periods of rapid growth, very little peptide was deaminated to ammonia, but after growth ceased there was a linear increase in ammonia. Fifteen grams of Trypticase per liter resulted in maximum ammonia production. In glucose-limited chemostats, ammonia production from peptides was inversely proportional to the dilution rate, and 87% of the variation in ammonia production could be explained by retention time in the culture vessel. Chemostats receiving Trypticase had higher theoretical maximum growth yields and lower maintenance energy expenditures than similar cultures not receiving peptide. Cells from the Trypticase cultures contained more carbohydrate, and this difference was most evident at rapid dilution rates. When corrections were made for cell composition and the amount of peptides that were fermented, it appeared that peptide carbon skeletons could be used for maintenance energy. B. ruminicola B(1)4 was unable to grow on peptides alone because it was unable to utilize peptides at a fast enough rate to meet its maintenance requirement.  相似文献   

8.
Most members of the phylum Planctomycetes share many unusual traits that are unique for bacteria, since they divide independent of FtsZ through asymmetric budding, possess a complex life cycle and comprise a compartmentalized cell plan. Besides their complex cell biological features Planctomycetes are environmentally important and play major roles in global matter fluxes. Such features have been successfully employed in biotechnological applications such as the anaerobic oxidation of ammonium in wastewater treatment plants or the utilization of enzymes for biotechnological processes. However, little is known about planctomycetal secondary metabolites. This is surprising as Planctomycetes have several key features in common with known producers of small bioactive molecules such as Streptomycetes or Myxobacteria: a complex life style and large genome sizes. Planctomycetal genomes with an average size of 6.9 MB appear as tempting targets for drug discovery approaches. To enable the hunt for bioactive molecules from Planctomycetes, we performed a comprehensive genome mining approach employing the antiSMASH secondary metabolite identification pipeline and found 102 candidate genes or clusters within the analyzed 13 genomes. However, as most genes and operons related to secondary metabolite production are exclusively expressed under certain environmental conditions, we optimized Phenotype MicroArray protocols for Rhodopirellula baltica and Planctomyces limnophilus to allow high throughput screening of putative stimulating carbon sources. Our results point towards a previously postulated relationship of Planctomycetes with algae or plants, which secrete compounds that might serve as trigger to stimulate the secondary metabolite production in Planctomycetes. Thus, this study provides the necessary starting point to explore planctomycetal small molecules for drug development.  相似文献   

9.
Fungi are well known for their vast diversity of secondary metabolites that include many life-saving drugs and highly toxic mycotoxins. In general, fungal cultures producing such metabolites are immune to their toxic effects. However, some are known to produce self-toxic compounds that can pose production optimization challenges if the metabolites are needed in large amounts for chemical modification. One such culture, LV-2841, was identified as the lead for one of our exploratory projects. This culture was found to be a slow grower that produced trace amounts of a known metabolite, cercosporamide, under the standard flask fermentation conditions, and extensive medium optimization studies failed to yield higher titers. Poor growth of the culture in liquid media was attributed to the self-toxicity of cercosporamide to the producing organism, and the minimum inhibitory concentration (MIC) of cercosporamide was estimated to be in the range of 8–16 μg/ml. Fermentations carried out in media containing Diaion® HP20 resin afforded significantly higher titers of the desired compound. While several examples of resin-based fermentations of soil streptomyces have been published, this approach has rarely been used for fungal fermentations. Over a 100-fold increase in the production titer of cercosporamide, a self-toxic secondary metabolite, was achieved by supplementing the production medium with a commercially available neutral adsorbent resin.  相似文献   

10.
11.
Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell.  相似文献   

12.
13.
Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-tryptone-glucose-yeast extract medium resulted in a 80% decrease in the TBBPA concentration and accumulation of a single metabolite. This metabolite was identified by gas chromatography-mass spectrometry (GC-MS) as nonbrominated bisphenol A (BPA). On the other hand, TBP was reductively dehalogenated to phenol, which was further metabolized under anaerobic conditions. BPA persisted in the anaerobic slurry but was degraded aerobically. A gram-negative bacterium (strain WH1) was isolated from the contaminated soil, and under aerobic conditions this organism could use BPA as a sole carbon and energy source. During degradation of BPA two metabolites were detected in the culture medium, and these metabolites were identified by GC-MS and high-performance liquid chromatography as 4-hydroxybenzoic acid and 4-hydroxyacetophenone. Both of those compounds were utilized by WH1 as carbon and energy sources. Our findings demonstrate that it may be possible to use a sequential anaerobic-aerobic process to completely degrade TBBPA in contaminated soils.  相似文献   

14.
Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-tryptone-glucose-yeast extract medium resulted in a 80% decrease in the TBBPA concentration and accumulation of a single metabolite. This metabolite was identified by gas chromatography-mass spectrometry (GC-MS) as nonbrominated bisphenol A (BPA). On the other hand, TBP was reductively dehalogenated to phenol, which was further metabolized under anaerobic conditions. BPA persisted in the anaerobic slurry but was degraded aerobically. A gram-negative bacterium (strain WH1) was isolated from the contaminated soil, and under aerobic conditions this organism could use BPA as a sole carbon and energy source. During degradation of BPA two metabolites were detected in the culture medium, and these metabolites were identified by GC-MS and high-performance liquid chromatography as 4-hydroxybenzoic acid and 4-hydroxyacetophenone. Both of those compounds were utilized by WH1 as carbon and energy sources. Our findings demonstrate that it may be possible to use a sequential anaerobic-aerobic process to completely degrade TBBPA in contaminated soils.  相似文献   

15.
Class III peroxidases (Prxs) are plant enzymes capable of using H(2)O(2) to oxidize a range of plant secondary metabolites, notably phenolic compounds. These enzymes are localized in the cell wall or in the vacuole, which is a target for secondary metabolite accumulation, but very little is known about the function of vacuolar Prxs. Here, the physiological role of the main leaf vacuolar Prx of the medicinal plant Catharanthus roseus, CrPrx1, was further investigated namely by studying its capacity to oxidize co-localized phenolic substrates at the expense of H(2)O(2). LC-PAD-MS analysis of the phenols from isolated leaf vacuoles detected the presence of three caffeoylquinic acids and four flavonoids in this organelle. These phenols or similar compounds were shown to be good CrPrx1 substrates, and the CrPrx1-mediated oxidation of 5-O-caffeoylquinic acid was shown to form a co-operative regenerating cycle with ascorbic acid. Interestingly, more than 90% of total leaf Prx activity was localized in the vacuoles, associated to discrete spots of the tonoplast. Prx activity inside the vacuoles was estimated to be 1809 nkat ml(-1), which, together with the determined concentrations for the putative vacuolar phenolic substrates, indicate a very high H(2)O(2) scavenging capacity, up to 9 mM s(-1). Accordingly, high light conditions, known to increase H(2)O(2) production, induced both phenols and Prx levels. Therefore, it is proposed that the vacuolar couple Prx/secondary metabolites represent an important sink/buffer of H(2)O(2) in green plant cells.  相似文献   

16.
Utilizing phosphate more efficiently is crucial for sustainable crop production. Highly efficient rice (Oryza sativa) cultivars have been identified and this study aims to identify metabolic markers associated with P utilization efficiency (PUE). P deficiency generally reduced leaf P concentrations and CO2 assimilation rates but efficient cultivars were reducing leaf P concentrations further than inefficient ones while maintaining similar CO2 assimilation rates. Adaptive changes in carbon metabolism were detected but equally in efficient and inefficient cultivar groups. Groups furthermore did not differ with respect to partial substitutions of phospholipids by sulfo- and galactolipids. Metabolites significantly more abundant in the efficient group, such as sinapate, benzoate and glucoronate, were related to antioxidant defence and may help alleviating oxidative stress caused by P deficiency. Sugar alcohols ribitol and threitol were another marker metabolite for higher phosphate efficiency as were several amino acids, especially threonine. Since these metabolites are not known to be associated with P deficiency, they may provide novel clues for the selection of more P efficient genotypes. In conclusion, metabolite signatures detected here were not related to phosphate metabolism but rather helped P efficient lines to keep vital processes functional under the adverse conditions of P starvation.  相似文献   

17.
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.  相似文献   

18.
Strain S-36, a marine Pseudomonas sp., was grown under manganese limitation in continuous culture. At dilution rates below a maximal growth rate of 0.066 h-1, the rate at which the organism fixed CO2 into macromolecules was equal to the cell carbon production rate. In addition, the total amount of cell carbon or CO2 fixed at steady-state was in proportion to the amount of energy available from the oxidation of Mn2+ in the medium. These data suggest that the organism can grow by obtaining the energy for CO2 fixation from manganese oxidation.  相似文献   

19.
Talbot, N. J., Vincent, P., and Wildman, H. G. 1996. The influence of genotype and environment on the physiological and metabolic diversity ofFusarium compactum. Fungal Genetics and Biology20,254–267. Fungal species produce a large variety of secondary metabolites which are of considerable interest to the pharmaceutical industry. It is clear that the secondary metabolite production of a species varies significantly in strains from different geographic locations and from different habitats. The influence of genotype and environment on metabolite production is, however, poorly understood. In this study we examined the influence of genotypic variability, physiological variability, environmental location, and habitat on metabolite production byFusarium compactum.Isolates of the fungus from two geographic locations and two distinct habitat types were examined for growth on 95 different carbon sources, and genotypic variability was determined using RAPDs and rDNA–RFLP analysis. In a blind test secondary metabolite production was assessed using HPLC profiles of methanolic cell extracts. A number of correlations were observed between genotypic groupings, as determined using parsimony, and specific metabolite production. Similar correlations were also observed with physiological groups although genotypic analysis proved to be a more sensitive predictor of metabolite variability. The data suggest a complex relationship between environment, genotype, and metabolite production but highlight the use of genetic screening as a means of optimizing the chances of identifying a wide range of metabolites from a given species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号