首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.  相似文献   

2.
The incidence of skin cancers such as non-melanoma skin cancer and malignant melanoma has increased in the last few years mainly because of chronic exposure to ultraviolet (UV) radiation. Sunscreens protect the skin against harmful UV radiations; however, some limitations of these products justify the discovery of new UV filters. Novel 1,3,5-triazine derivatives (12a-h) obtained by the optimization of prototype resveratrol were synthesized and characterized. All compounds exhibited sun protection factor (SPF) and UVA protection factor (UVAPF) in the range of 3–17 and 3–13, respectively. These values were superior to resveratrol and the UV filter ethylhexyl triazone (EHT) currently available on the market. In addition, all compounds demonstrated in vitro antioxidant activity and thermal stability with the decomposition at temperatures above 236 °C. In conclusion, the novel 1,3,5-triazine derivatives have emerged as new UV filters with antioxidant effect useful to prevent skin cancer.  相似文献   

3.
This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.  相似文献   

4.
Basal cell carcinoma and squamous cell carcinoma, collectively termed non-melanoma skin cancers are the most common malignant tumors in humans. Basal cell carcinoma grows slowly and metastatic spread is very rare. Squamous cell carcinoma is characterized by infiltrative, destructive growth and metastasis. Long-term exposure of skin to UV light has a great impact on development of these epidermal malignancies. UV light induces cascade of events like well known DNA damage of keratinocytes as well as still completely undetermined influence on apoptotic process through expression of proapoptotic and antiapoptotic molecules. The major role in development of skin cancer is given to proapoptotic p53 molecule or tumor suppressor gene which mutation due to UV exposure leads to resistance of DNA-damaged cell to apoptosis. Other proapoptotic molecules such as Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are strongly expressed in basal cell carcinoma and squamous cell carcinoma that could be explained by the ability of tumor to escape the attack of immune system.  相似文献   

5.
Ultraviolet (UV) radiation is an environmental agent that has a major impact on humans, and cumulative exposure poses a serious risk in terms of developing skin cancer. Acute doses of UV induce apoptotic cell death in the skin via signalling pathways that are, in part, dependent on the p53 tumour suppressor protein. However, p53-independent mechanisms have also been described. Recent findings show that a high proportion of non-melanoma skin cancers contain human papillomavirus. The viral E6 protein effectively blocks the epidermal apoptotic response to UV and might play a key role in promoting tumour development in cooperation with the mutagenic effects of UV.  相似文献   

6.
The responses of tail skin and colonic temperatures of female rats to ambient temperatures of 20, 22, 24, 26, 28, and 30 degrees C were measured. Within this range, colonic temperature was stable while tail skin temperature increased linearly with increasing ambient temperature. Administration of the beta-adrenergic agonist, d,l-isoproterenol, at 10.0, 25.0, and 62.5 micrograms/kg, sc, at each ambient temperature was accompanied by increases in tail skin and colonic temperatures that were dependent on both the dose of isoproterenol administered and the ambient temperature. The integrated responses of tail skin temperature following administration of the three doses of isoproterenol were maximal at an ambient temperature of 26 degrees C while the integrated responses of colonic temperature were maximal at 30 degrees C. The results suggest that tests of beta-adrenergic responsiveness using this technique should be performed at an ambient temperature of 26 degrees C for maximal sensitivity.  相似文献   

7.
IntroductionThe COVID-19 epidemic interrupted normal cancer diagnosis procedures. Population-based cancer registries report incidence at least 18 months after it happens. Our goal was to make more timely estimates by using pathologically confirmed cancers (PDC) as a proxy for incidence. We compared the 2020 and 2021 PDC with the 2019 pre-pandemic baseline in Scotland, Wales, and Northern Ireland (NI).MethodsNumbers of female breast (ICD-10 C50), lung (C33–34), colorectal (C18–20), gynaecological (C51–58), prostate (C61), head and neck (C00-C14, C30–32), upper gastro-intestinal (C15–16), urological (C64–68), malignant melanoma (C43), and non-melanoma skin (NMSC) (C44) cancers were counted. Multiple pairwise comparisons generated incidence rate ratios (IRR).ResultsData were accessible within 5 months of the pathological diagnosis date. Between 2019 and 2020, the number of pathologically confirmed malignancies (excluding NMSC) decreased by 7315 (14.1 %). Scotland experienced early monthly declines of up to 64 % (colorectal cancers, April 2020 versus April 2019). Wales experienced the greatest overall change in 2020, but Northern Ireland experienced the quickest recovery. The pandemic's effects varied by cancer type, with no significant change in lung cancer diagnoses in Wales in 2020 (IRR 0.97 (95 % CI 0.90–1.05)), followed by an increase in 2021 (IRR 1.11 (1.03–1.20).ConclusionPDC are useful in reporting cancer incidence quicker than cancer registrations. Temporal and geographical differences between participating countries mirrored differences in responses to the COVID-19 pandemic, indicating face validity and the potential for quick cancer diagnosis assessment. To verify their sensitivity and specificity against the gold standard of cancer registrations, however, additional research is required.  相似文献   

8.
Since 1970s, incidence rates for malignant melanoma have been among the fastest rising of all cancers in the UK. Compared to other cancers, melanoma affects disproportionately more young people, and non-melanoma skin cancers are the most commonly diagnosed, with over 100,000 new cases estimated in the UK annually. Government targets to reduce skin cancer incidence have led working groups and prevention campaigns to be set up in the belief that moderating UV exposure will help. An increased awareness of skin cancer has clearly played a role in curbing mortality from the disease, but translating knowledge into behaviour change in this context is a slow and complex process, and campaigns need to be sustained if they are to impact on incidence. A growing body of literature suggesting a cancer protective role for vitamin D and sun exposure presents further challenges for skin cancer prevention campaigns, no more so than when exaggerated claims for the health benefits of sunbathing make the media spotlight. The UK population tend to need little encouragement to make the most of sunshine, and this is especially true for the younger generation who most need to take care. Public health messages to avoid the midday sun, not to burn and to protect children should not adversely affect outdoor activity or population vitamin D levels, but it is important that they are targeted to those most at risk and are consistent. More research is required to establish optimal levels of vitamin D and how to safely achieve them in a heterogeneous population. In the meantime, hasty alterations of public health messages are likely to prove counterproductive.  相似文献   

9.
Over 1 million new cases of ultraviolet radiation-induced non-melanoma skin cancers (NMSC) per year now occur in the USA and the incidence of these diseases continues to increase. New preventative strategies are required. The hypothesis tested was that dietary administration of the putative cancer chemopreventatives sodium-copper-chlorophyllin (Chlor) or indole-3-carbinol (I3C) would inhibit UV-induced skin carcinogenesis in the Crl:SKH1:hr-BR hairless mouse. Groups of 20 mice were pre-fed isocaloric/isonutritive 20% corn-oil AIN-76a based diets that contained either Chlor (1.52 g%), I3C (5.08 g%) or no chemopreventative (control) for 2 weeks followed by exposure of their dorsal skin to a 10 week incremental, sub-erythemal, carcinogenic simulated solar UV exposure regime. Feeding was continued for the duration of the experiment. Matched non-UV exposed dietary groups were also included in the experimental design. The diets had no significant (p > 0.05) effect on body weight, feed consumption, cutaneous methanol-extractable UV photoprotective substances or on cutaneous UV-reflective characteristics. By day 180, UV-irradiated mice fed the Chlor had a significantly (p < 0.05) higher tumor multiplicity (33.6 +/- 4.72; mean +/- SEM) than UV-irradiated control animals (22.8 +/- 4.25). UV-irradiated mice fed I3C had a significantly (p < 0.001) lower tumor multiplicity (13.0 +/- 2.42) than that of both the UV-irradiated control and UV-irradiated Chlor-fed mice. The Chlor or I3C diets did not significantly (p > 0.05) affect UV-induced systemic suppression of contact hypersensitivity responses. These results demonstrate augmentation of the UV-induced cutaneous carcinogenic process by dietary chlorophyllin and protection from this carcinogenic process by indole-3-carbinol via mechanisms that do not involve changes in skin optical properties, modulation of photoimmunosuppression or caloric/nutrient effects.  相似文献   

10.
Polo-like kinase 1 (Plk1) is becoming an increasingly attractive target for cancer management. Plk1 has been shown to be over-expressed in a variety of cancers; however its role in skin cancers is not well-understood. We recently demonstrated that Plk1 is over-expressed in human melanoma and gene-knockdown as well as chemical-inhibition of Plk1 resulted in a significant decrease in melanoma cell viability and growth without affecting the growth of the normal human epidermal melanocytes (NHEMs). Further, the observed anti-proliferative response of Plk1 was found to be accompanied with a significant G2/M cell cycle arrest, mitotic catastrophe and induction of apoptosis in melanoma cells. In this study, we determined the expression profile of Plk1 in non-melanoma skin cancers viz. basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Our data demonstrated that like melanoma, Plk1 is significantly over-expressed in BCC and SCC samples. Further, we also found that compared to normal human epidermal keratinocytes (NHEKs), Plk1 was over-expressed at both the protein and mRNA levels in squamous A253 and A431 cells. In addition, a similar protein expression pattern was found for the downstream targets of Plk1, viz. Cdk1, Cyclin B1 and Cdc25C. We believe that the expression pattern of Plk1 in the various skin cancers, the insusceptibility of normal keratinocytes, to Plk1 inhibition and the easy accessibility for topical applications lends the skin as an attractive tissue for Plk1 based cancer chemoprevention and chemotherapeutic applications.  相似文献   

11.
Ultraviolet A (UVA) radiation represents more than 90% of the solar UV radiation reaching Earth's surface. Exposure to solar UV radiation is a major risk in the occurrence of non-melanoma skin cancer. Whole genome sequencing data of melanoma tumors recently obtained makes it possible also to definitively associate malignant melanoma with sunlight exposure. Even though UVB has long been established as the major cause of skin cancer, the relative contribution of UVA is still unclear. In this review, we first report on the formation of DNA damage induced by UVA radiation, and on recent advances on the associated mechanism. We then discuss the controversial data on the UVA-induced mutational events obtained for various types of eukaryotic cells, including human skin cells. This may help unravel the role of UVA in the various steps of photocarcinogenesis. The connection to photocarcinogenesis is more extensively discussed by other authors in this issue.  相似文献   

12.
Excessive exposure of the skin to solar ultraviolet (UV) radiation is one of the major factors for the development of skin cancers, including non-melanoma. For the last several centuries the consumption of dietary phytochemicals has been linked to numerous health benefits including the photoprotection of the skin. Green tea has been consumed as a popular beverage world-wide and skin photoprotection by green tea polyphenols (GTPs) has been widely investigated. In this article, we have discussed the recent investigations and mechanistic studies which define the potential efficacy of GTPs on the prevention of non-melanoma skin cancer. UV-induced DNA damage, particularly the formation of cyclobutane pyrimidine dimers, has been implicated in immunosuppression and initiation of skin cancer. Topical application or oral administration of green tea through drinking water of mice prevents UVB-induced skin tumor development, and this prevention is mediated, at least in part, through rapid repair of DNA. The DNA repair by GTPs is mediated through the induction of interleukin (IL)-12 which has been shown to have DNA repair ability. The new mechanistic investigations support and explain the anti-photocarcinogenic activity, in particular anti-non-melanoma skin cancer, of green tea and explain the benefits of green tea for human health.  相似文献   

13.
14.

Background

Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation.

Objectives

We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia.

Methods

Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC.

Results

Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure.

Conclusions

The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned.  相似文献   

15.
Epidemiological and experimental evidences have established solar ultraviolet (UV) radiation as the leading cause of skin cancers. Specifically, the frequency of non-melanoma skin cancer, one of the malignancies with the most rapidly increasing incidence, is directly related to the total exposure to solar UV light. As part of a general effort to elucidate the components of cellular signal transduction pathways, the mechanisms of cellular responses to UV radiation have received considerable attention over the last few years. These efforts were driven mainly by the conviction that understanding how normal cells respond to extracellular stimuli such as exposure to UV radiation will undoubtedly help in deciphering what goes wrong in a variety of clinical disorders including skin cancers and will assist in the development of novel therapeutic strategies. Studies over the last decade have established that UV radiation induces a bewildering array of signal transduction pathways, some of which could lead to apoptotic cell death. UV-induced cell death by apoptosis is considered to be a natural protective mechanism that removes damaged keratinocytes and circumvents the risk of malignant transformation. In this review, we summarize some of the most important findings regarding the response and role of mitogen-activated protein kinases in UVA and UVB radiation-induced signaling to apoptosis in keratinocytes. We will also briefly discuss what is known about the role of the BCL-2 family of proteins, the emerging role of lysosomal proteases and other important cytosolic signaling proteins in UV-induced apoptosis.  相似文献   

16.
Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.  相似文献   

17.
BackgroundConsistent epidemiologic and experimental studies have demonstrated that UV-emitting tanning devices cause melanoma and non-melanoma skin cancer. The purpose of this study was to estimate the relative risk of skin cancer associated with the use of indoor tanning devices relevant to Canada, to estimate the proportion and number of skin cancers in Canada in 2015 that were attributable to indoor tanning, and to explore differences by age and sex.MethodsSkin cancer cases attributable to the use of an indoor tanning devices were estimated using Levin’s population attributable risk (PAR) formula. Relative risks for skin cancer subtypes that were relevant to Canada were estimated through meta-analyses and prevalence of indoor tanning was estimated from the 2006 National Sun Survey. Age- and sex-specific melanoma data for 2015 were obtained from the Canadian Cancer Registry, while estimated NMSC incidence data were obtained from the 2015 Canadian Cancer Statistics report.ResultsEver use of indoor tanning devices was associated with relative risks of 1.38 (95% CI 1.22–1.58) for melanoma, 1.39 (1.10–1.76) for basal cell carcinoma (BCC), and 1.49 (1.23–1.80) for squamous cell carcinoma (SCC). Overall, 7.0% of melanomas, 5.2% of BCCs, and 7.5% of SCCs in 2015 were attributable to ever of indoor tanning devices. PARs were higher for women and decreased with age.ConclusionIndoor tanning contributes to a considerable burden of skin cancer in Canada. Strategies aimed at reducing use should be increased and a total ban or restrictions on use and UV-intensity should be considered by health regulators.  相似文献   

18.
Heat loss from the human head during exercise   总被引:2,自引:0,他引:2  
Evaporative and convective heat loss from head skin and expired air were measured in four male subjects at rest and during incremental exercise at 5, 15, and 25 degrees C ambient temperature (Ta) to verify whether the head can function as a heat sink for selective brain cooling. The heat losses were measured with an open-circuit method. At rest the heat loss from head skin and expired air decreased with increasing Ta from 69 +/- 5 and 37 +/- 18 (SE) W (5 degrees C) to 44 +/- 25 and 26 +/- 7 W (25 degrees C). At a work load of 150 W the heat loss tended to increase with increasing Ta: 119 +/- 21 (head skin) and 82 +/- 5 W (respiratory tract) at 5 degrees C Ta to 132 +/- 27 and 103 +/- 12 W at 25 degrees C Ta. Heat loss was always higher from the head surface than from the respiratory tract. The heat losses, separately and together (total), were highly correlated to the increasing esophageal temperature at 15 and 25 degrees C Ta. At 5 degrees C Ta on correlation occurred. The results showed that the heat loss from the head was larger than the heat brought to the brain by the arterial blood during hyperthermia, estimated to be 45 W per 1 degree C increase above normal temperature, plus the heat produced by the brain, estimated to be up to 20 W. The total heat to be lost is therefore approximately 65 W during a mild hyperthermia (+1 degrees C) if brain temperature is to remain constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.  相似文献   

20.
In recent decades, several Western countries have reported an increase in oropharyngeal and anal cancers caused by human papillomavirus (HPV). Trends in HPV-associated cancers in Asia have not been as well described. We describe the epidemiology of potentially HPV-related cancers reported to the Singapore Cancer Registry from 1968–2012. Analysis included 998 oropharyngeal squamous cell carcinoma (OPSCC), 183 anal squamous cell carcinoma (ASCC) and 8,019 invasive cervical cancer (ICC) cases. Additionally, 368 anal non-squamous cell carcinoma (ANSCC) and 2,018 non-oropharyngeal head and neck carcinoma (non-OP HNC) cases were included as comparators. Age-standardized incidence rates (ASR) were determined by gender and ethnicity (Chinese, Malay and Indian). Joinpoint regression was used to evaluate annual percentage change (APC) in incidence. OPSCC incidence increased in both genders (men 1993–2012, APC = 1.9%, p<0.001; women 1968–2012, APC = 2.0%, p = 0.01) and was 5 times higher in men than women. In contrast, non-OP HNC incidence declined between 1968–2012 among men (APC = -1.6%, p<0.001) and women (APC = -0.4%, p = 0.06). ASCC and ANSCC were rare (ASR = 0.2 and 0.7 per 100,000 person-years, respectively) and did not change significantly over time except for increasing ANSCCs in men (APC = 2.8%, p<0.001). ICC was the most common HPV-associated cancer (ASR = 19.9 per 100,000 person-years) but declined significantly between 1968–2012 (APC = -2.4%). Incidence of each cancer varied across ethnicities. Similar to trends in Western countries, OPSCC incidence increased in recent years, while non-OP HNC decreased. ICC remains the most common HPV-related cancer in Singapore, but Pap screening programs have led to consistently decreasing incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号