首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uenaka H  Wada M  Kadota A 《Planta》2005,222(4):623-631
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.  相似文献   

2.
Wang X  Yang P  Gao Q  Liu X  Kuang T  Shen S  He Y 《Planta》2008,228(1):167-177
Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured changes in the proteome of P. patens gametophores that were exposed to high-salinity (250, 300, and 350 mM NaCl) using two-dimensional gel electrophoresis (2-DE) via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots were significantly altered by exposure to the high-salinity environment. Among them, 16 protein spots were down-regulated and 49 protein spots were up-regulated. These proteins were associated with a variety of functions, including energy and material metabolism, protein synthesis and degradation, cell defense, cell growth/division, transport, signal transduction, and transposons. Specifically, the up-regulated proteins were primarily involved in defense, protein folding, and ionic homeostasis. In summary, we outline several novel insights into the response of P. patens to high-salinity; (1) HSP70 is likely to play a significant role in protecting proteins from denaturation and degradation during salinity stress, (2) signaling proteins, such as 14-3-3 and phototropin, may work cooperatively to regulate plasma membrane H(+)-ATPase and maintain ion homeostasis, (3) an increase in photosynthetic activity may contribute to salinity tolerance, and (4) ROS scavengers were up-regulated suggesting that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to salinity stress in P. patens.  相似文献   

3.
Frank W  Ratnadewi D  Reski R 《Planta》2005,220(3):384-394
In order to determine the degree of tolerance of the moss Physcomitrella patens to different abiotic stress conditions, we examined its tolerance against salt, osmotic and dehydration stress. Compared to other plants like Arabidopsis thaliana, P. patens exhibits a high degree of abiotic stress tolerance, making it a valuable source for the identification of genes effecting the stress adaptation. Plants that had been treated with NaCl tolerated concentrations up to 350 mM. Treatments with sorbitol revealed that plants are able to survive concentrations up to 500 mM. Furthermore, plants that had lost 92% water on a fresh-weight basis were able to recover successfully. For molecular analyses, a P. patens expressed sequence tag (EST) database was searched for cDNA sequences showing homology to stress-associated genes of seed plants and bacteria. 45 novel P. patens genes were identified and subjected to cDNA macroarray analyses to define their expression pattern in response to water deficit. Among the selected cDNAs, we were able to identify a set of genes that is specifically up-regulated upon dehydration. These genes encode proteins exerting their function in maintaining the integrity of the plant cell as well as proteins that are known to be members of signaling networks. The identified genes will serve as molecular markers and potential targets for future functional analyses.  相似文献   

4.
5.
Drew DP  Lunde C  Lahnstein J  Fincher GB 《Planta》2007,225(4):945-954
Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) catalyses the reduction of the monodehydroascorbate (MDHA) radical to ascorbate, using NADH or NADPH as an electron donor, and is believed to be involved in maintaining the reactive oxygen scavenging capability of plant cells. This key enzyme in the ascorbate-glutathione cycle has been studied here in the moss Physcomitrella patens, which is tolerant to a range of abiotic stresses and is increasingly used as a model plant. In the present study, three cDNAs encoding different MDHAR isoforms of 47 kDa were identified in P. patens, and found to exhibit enzymic characteristics similar to MDHARs in vascular plants despite low-sequence identity and a distant evolutionary relationship between the species. The three cDNAs for the P. patens MDHAR enzymes were expressed in Escherichia coli and the active enzymes were purified and characterized. Each recombinant protein displayed an absorbance spectrum typical of flavoenzymes and contained a single non-covalently bound FAD coenzyme molecule. The K m and k cat values for the heterologously expressed PpMDHAR enzymes ranged from 8 to 18 μM and 120–130 s−1, respectively, using NADH as the electron donor. The K m values were at least an order of magnitude higher for NADPH. The K m values for the MDHA radical were ∼0.5–1.0 μM for each of the purified enzymes, and further kinetic analyses indicated that PpMDHARs follow a ‘ping–pong’ kinetic mechanism. In contrast to previously published data, site-directed mutagenesis indicated that the conserved cysteine residue is not directly involved in the reduction of MDHA.  相似文献   

6.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   

7.
8.
9.
We isolated the full-length cDNAs of engrailed and dpp-BMP2/4 orthologues from the pond snail Lymnaea stagnalis and examined their expression patterns during development by the whole mount in situ hybridization. At the gastrula and trochophore stages, engrailed is expressed in the peripheral ectoderm of the presumptive and invaginating shell gland, corroborating its role in the shell formation that is widely conserved among molluscs. At the same stages, dpp-BMP2/4 is expressed in the right-hand side ectoderm of the shell gland and in the invaginating stomodaeum. Unlike in the gastropod Patella vulgata, our results suggested that dpp-BMP2/4 has a role in the shell formation, rather than in the regional specification and that it could be involved in the specification pathway of the left–right asymmetry of the developing shell in L. stagnalis.  相似文献   

10.
We identified 77 EST clones encoding germin-like proteins (GLPs) from a moss, Physcomitrella patens in a database search. These Physcomitrella GLPs (PpGLPs) were separated into seven groups based on DNA sequence homology. Phylogenetic analysis showed that these groups were divided into two novel clades clearly distinguishable from higher plant germins and GLPs, named bryophyte subfamilies 1 and 2. PpGLPs belonging to bryophyte subfamilies 1 lacked two cysteines at the conserved positions observed in higher plant germins or GLPs. PpGLPs belonging to bryophyte subfamily 2 contained two cysteines as observed in higher plant germins and GLPs. In bryophyte subfamily 1, 12 amino acids, in which one of two cysteines is included, were deleted between boxes A and B. Further, we determined the genomic structure of all of seven PpGLP genes. The sequences of PpGLPs of bryophyte subfamily 1 contained one or two introns, whereas those of bryophyte subfamily 2 contained no introns. Other GLPs from bryophytes, a liverwort GLP from Marchantia polymorpha, and two moss GLPs from Barbula unguiculata and Ceratodon purpureus also fell into bryophyte subfamily 1 and bryophyte subfamily 2, respectively. No higher plant germins and GLPs were grouped into the bryophyte subfamilies 1 and 2 by our analysis. Moreover, we revealed that PpGLP6 had manganese-containing extracellular superoxide dismutase activity. These results indicated that bryophyte possess characteristic GLPs, which phylogenetically are clearly distinguishable from higher plant GLPs.  相似文献   

11.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

12.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

13.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

14.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

17.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

18.
19.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

20.
The presence of the tetracyclic diterpene 16-hydroxykaurane (16-hydroxy-ent-kaurane, C20H34O, CAS 5524–17–4) was detected in sterile cell cultures of the moss Physcomitrella patens (Hedw.) B.S.G. using gas chromatography and mass spectrometry. 16-hydroxykaurane was found to be a major lipid compound in P. patens, with an estimated intracellular concentration of up to 0.84 mmol/l and an extracellular concentration of up to 9.3 µmol/l. The overall content of 16-hydroxykaurane (in milligrams) produced per culture reached 0.37-fold that of chlorophyll a+b. In agar cultures with low air exchange, 16-hydroxykaurane forms needle-like crystals on tissue and on the inner surface of the culture vessels, indicating that it is being released into the atmosphere. Solid phase microextraction confirmed the air-bound release of 16-hydroxykaurane. To our knowledge this is the first report on the release of a plant-derived tetracyclic diterpene into the air.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. ReskiThis work is dedicated to the 65th birthday of Prof. Heinz Hahn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号