首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichodesmium thiebautii Gomont, a marine planktonic diazotrophic cyanobacterium, has an unusual subcellular arrangement. To identify subcellular structures related to photosynthesis, antibodies against phycoerythrin, phycocyanin, and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were used together with an immuno-gold labeling technique and electron microscopy. Thylakoid membranes, identified by transmission electron microscopy and phycobiliprotein labeling, were arranged as a loose network throughout all cells. Rubisco showed a particularly intense localization in medium electron-dense polyhedral bodies, therefore identified as carboxysomes. The average density of the carboxysomal Rubisco label was about five times higher than that in the cytoplasm. The carboxysomes (4–11 per cell section) were scattered throughout the cytoplasm. These data, together with those obtained from double immunolabeling experiments using nitrogenase (Fe-protein) and Rubisco antibodies, revealed that Trichodesmium contains both N2- and CO2-fixing proteins within the same cell. This is in contrast to the previous concept of a spatial segregation of the two processes in Trichodesmium and demonstrate that nitrogenase-containing cells are not comparable to heterocysts in this context.  相似文献   

2.
Carboxysomes are polyhedral bodies consisting of a proteinaceous shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO). They are found in the cytoplasm of all cyanobacteria and some chemoautotrophic bacteria. Previous studies of Halothiobacillus neapolitanus and Nitrobacter agilis carboxysomes suggest that the structures are either icosahedral or dodecahedral. To determine the protein shell structure more definitively, purified H. neapolitanus carboxysomes were re-examined by cryo-electron tomography and scanning transmission electron microscopy (STEM). Due to the limited tilt angles in the electron microscope, the tomographic reconstructions are distorted. Corrections were made in the 3D orientation searching and averaging of the computationally extracted carboxysomes to minimize the missing data effects. It was found that H. neapolitanus carboxysomes vary widely in size and mass as shown by cryo-electron tomography and STEM mass measurements, respectively. We have aligned and averaged carboxysomes in several size classes from the 3D tomographic reconstruction by methods that are not model-biased. The averages reveal icosahedral symmetry of the shell, but not of the density inside it, for all the size classes.  相似文献   

3.
Fonsecaea pedrosoi is a polymorphic pathogenic fungus, etiological agent of chromoblastomycosis, that synthesizes a melanin-like pigment. Although this pigment has been described as a component of the outer layers of the cell wall, electron-dense cytoplasmic bodies have also been visualized. In this work, we have correlated the appearance of intracellular electron-dense granules with the melanization process in F. pedrosoi. For this, conidial forms were grown under conditions where melanin was not synthesized. Afterwards, cells were incubated in Hank's medium supplemented with bovine fetal serum, at 37 degrees C, to stimulate the pigment production. The genesis of cytoplasmic bodies, with different stages of electron density, was demonstrated by transmission electron microscopy. The appearance of fungal acidic compartments, visualized by confocal laser scanning microscopy in cells stained with acridine orange, was time coincident with the formation of electron-dense granules observed by transmission electron microscopy. The quantification of granule numbers as well as morphometric and densitometric studies were performed.  相似文献   

4.
The outer part of the carboxysomes of Thiobacillus neapolitanus was examined by electron microscopy using negatively stained, cryo-treated, frozen hydrated and freeze dried specimens. From stereo-micrographs of freeze dried and fixated carboxysomes the three dimensional structure of the carboxysomes was elucidated. The carboxysomes always appear as hexagonal bodies, which possess twelve pentameric planes. This indicates that carboxysomes have the form of a pentagonal dodecahedron. Inside the carboxysomes the ribulose-1,5-bisphosphate carboxylase molecules are arranged in rows and concentric rings. Negatively stained and cryo-treated carboxysomes do not differ significantly in size. The mean size of these carboxysomes is 117.3±6.9 nm (n=782)  相似文献   

5.
The potential of scanning electron microscopy as a tool for the detection of viruses on cell surfaces has been studied using bacteriophage P1 adsorbed to Shigella dysenteriae as a model system. Viral particles were readily detectable by scanning electron microscopy on the surface of infected cells which were fixed with glutaraldehyde followed by postfixation in OsO4 and prepared by critical point drying. The virus-studded surface of the infected cells differed markedly from the relatively smooth surfaces of uninfected control cells. Examination of the same preparations with transmission electron microscopy revealed numerous viral particles adsorbed to the surfaces of infected cells, whereas the control cells were free of viruses as expected. Glutaraldehyde fixation alone did not preserve the surface detail of infected cells: cells adsorbed with viruses were not distinguishable from control cells by scanning electron microscopy although by transmission electron microscopy viruses could be visualized. Air drying from water or absolute alcohol resulted in unsatisfactory preservation as compared to the appearance of infected cells prepared by the critical point method. Thus, scanning electron microscopy is capable of resolving viral particles on cell surfaces, but detection of these particles is completely dependent both on the method of fixation and on the technique of drying used.  相似文献   

6.
The effects of iron deficiency and iron reconstitution on the ultrastructure of the unicellular cyanobacterium Anacystis nidulans R2 were studied by electron microscopy. Low-iron cells, grown with different amounts of aeration, were analyzed at 6, 12, and 24 h after the addition of iron. Low-iron cells had a decrease in the quantities of membranes, phycobilisomes, and carboxysomes and a large increase in glycogen storage granules. In cells aerated with gentle shaking, the addition of iron caused the number of carboxysomes to increase rapidly within 6 h. This was paralleled by a decrease in the quantity of glycogen storage granules. Carboxysomes were associated with the nucleoplasmic face of the inner photosynthetic membrane in normal, but not low-iron, cells; they once more contacted the membrane by 6 h after iron addition. Phycobilisome assembly was apparent by 6 h, and the number of phycobilisomes increased throughout reconstitution. Membrane restoration was accomplished in two stages: (i) components were added to preexisting membranes until about 12 h, and (ii) new membranes were synthesized beginning at 12 to 18 h. Low-iron cells grown by bubbling with air had only one to two concentric layers of membrane per cell. The addition of iron led to a pattern of reconstitution that was similar to that described above with two important exceptions. Under these conditions, the number of carboxysomes remained low and the carboxysomes rarely contacted the photosynthetic membranes. New membranes were not synthesized until the culture had reached the late-logarithmic growth phase and after all other morphological features had returned to normal.  相似文献   

7.
Fluorescently labeled peanut lectin agglutinin (PNA-FITC) was used to identify a subtype of mitochondria-rich (MR) cells in the gills of freshwater rainbow trout. In situ binding of PNA-FITC was visualized by inverted fluorescence microscopy and found to bind to cells on the trailing edge of the filament epithelium as demonstrated by differential interference contrast optics. The amount of PNA-FITC binding on the filament epithelium increased with cortisol pretreatment concomitant with an increased chloride cell fractional area as demonstrated by scanning electron microscopy. Dispersed gill cells were isolated by trypsinization and separated using a discontinuous Percoll density gradient. Cells migrating to the 1.06-1.09 g/ml interface were found to be MR as demonstrated by staining with the vital mitochondrial dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide and transmission electron microscopy (TEM). However, only approximately 40% of the MR cells were found to bind PNA-FITC. Cortisol pretreatment increased the relative numbers of MR cells isolated from the dispersed gill cell population, but the relative proportions of PNA binding cells remained unchanged. Ultrastructural analysis of isolated cells in the TEM demonstrated that the MR cell fraction was comprised of a mixed population of chloride cells and pavement cells.  相似文献   

8.
The morphology and ultrastructure of the thermophilic cyanobacteriumMastigocladus laminosus were examined by scanning and transmission electron microscopy. Mature cultures consisted of relatively old, wide filaments that branched frequently to form younger, thinner filaments. The cells of the younger filaments had a consistently cylindrical morphology, while those of older filaments were rounded and pleomorphic. The internal ultrastructure of the cells depended somewhat on their age. As young cells became larger and wider, their thylakoids underwent slight rearrangement and spread out toward the center of the cytoplasm. Polyphosphate bodies, carboxysomes (polyhedral bodies), and lipid-body-like structures increased in number as the cells aged, but ribosomes and cyanophycin granules were depleted. Cell division involved septum formation followed by ingrowth of the outer membrane and sheath. Cells in older filaments were separated from each other by a complete layer of sheath material. Septum formation in older cells was also seen to occur parallel to the long axis of the filament, thereby confirming that true branching took place.  相似文献   

9.
Differential interference contrast, transmission electron and epifluorescence microscopy techniques were employed to examine the ultrastructure of the rectal glands in Heterorhabditis bacteriophora hermaphrodites, with special attention to the location of Photorhabdus bacteria symbionts within these structures. Three rectal glands were clearly visualized in all examined specimens, with two glands positioned sub-ventrally and another gland located dorsally. The dorsal rectal gland in all examined specimens is larger than the subventral ones. Our observations indicate that Photorhabdus bacteria do not colonize the rectal glands of H. bacteriophora hermaphrodites, but rather are present in the most posterior-intestinal cells.  相似文献   

10.
Carboxysomes are polyhedral inclusion bodies that play a key role in autotrophic metabolism in many bacteria. Using electron cryotomography, we examined carboxysomes in their native states within intact cells of three chemolithoautotrophic bacteria. We found that carboxysomes generally cluster into distinct groups within the cytoplasm, often in the immediate vicinity of polyphosphate granules, and a regular lattice of density frequently connects granules to nearby carboxysomes. Small granular bodies were also seen within carboxysomes. These observations suggest a functional relationship between carboxysomes and polyphosphate granules. Carboxysomes exhibited greater size, shape, and compositional variability in cells than in purified preparations. Finally, we observed carboxysomes in various stages of assembly, as well as filamentous structures that we attribute to misassembled shell protein. Surprisingly, no more than one partial carboxysome was ever observed per cell. Based on these observations, we propose a model for carboxysome assembly in which the shell and the internal RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) lattice form simultaneously, likely guided by specific interactions between shell proteins and RuBisCOs.  相似文献   

11.
When human lymphocytes are treated with concanavalin-A (con A) and hemocyanin, the hemocyanin marker, which demonstrates con A binding sites, can be visualized by scanning (SEM) and transmission electron microscopy (TEM) on both critical-point-dried and freeze-dried cells. The ability to visualize the hemocyanin marker by SEM, its quantity and distribution, were all similar in lymphocytes prepared by both drying procedures. By TEM, hemocyanin was seen adjacent to the plasma membrane on critical-point-dried lymphocytes. In contrast, freeze-dried cells showed hemocyanin labeling at some distance from the plasma membrane (40-70 nm) as well as adjacent to it. The distribution of hemocyanin corresponded to the thickness of the amorphous coat seen on fixed, freeze-dried cells. Therefore, the extracellular coat on freeze-dried lymphocytes is a carbohydrate-containing glycocalyx.  相似文献   

12.
The distribution of phosphoribulose kinase (PRK) in the cyanelles of Cyanophora paradoxa Korschikoff and Glaucocystis nostochinearum Itzigsohn was studied by protein A-gold immunoelectron microscopy. In both endocyanomes, antiserum against PRK heavily labeled the thylakoid region of the cyanelles, whereas little or no label was present over the carboxysomes. Antiserum against ribulose 1,5-bisphosphate carboxylase/oxygenase by contrast heavily labeled the carboxysomes of each endocyanome. In vitro studies of PRK distribution in cell-free extracts of C. paradoxa showed that 93% of the enzyme was in the soluble fraction. Quantitative immunoelectron microscopy showed that more than 99% of the PRK in the cyanelle of C. paradoxa was localized in the thylakoid region. We conclude that the carboxysomes of cyanelles like the carboxysomes of autotrophic prokaryotes and the pyrenoids of green algal chloroplasts do not contain phosphoribulose kinase.  相似文献   

13.
The cell coat of cultivated fetal rat brain cells as well as malignant rat neurogenic cell lines in culture were studied by transmission electron microscopy with the ruthenium red staining technique. Some of the transformed cell lines demonstrated alteration in the bindng properties of ruthenium red to the cell surface. Otherwise no significant correlation between the visualized cell coat thickness and neoplastic transformation was noted.  相似文献   

14.
Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well- preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the chromatin- depleted matrix and the desmosomal proteins were observed in punctate polygonal arrays at intercellular junctions. The filaments of the NM-IF were seen to be interconnected, via the desmosomes, over the entire epithelial colony. The differentiated epithelial morphology was reflected in both the cytoskeletal framework and the NM-IF scaffold.  相似文献   

15.
Phase contrast transmission electron microscopy (TEM) based on thin-film phase plates has been developed and applied to biological systems. Currently, development is focused on two techniques that employ two different types of phase plates. The first technique uses a Zernike phase plate, which is made of a uniform amorphous carbon film that completely covers the aperture of an objective lens and can retard the phase of electron waves by pi/2, except at the centre where a tiny hole is drilled. The other technique uses a Hilbert phase plate, which is made of an amorphous carbon film that is twice as thick as the Zernike phase plate, covers only half of the aperture and retards the electron wave phase by pi. By combining the power of efficient phase contrast detection with the accurate preservation achieved by a cryotechnique such as vitrification, macromolecular complexes and supermolecular structures inside intact bacterial or eukaryotic cells may be visualized without staining. Phase contrast cryo-TEM has the potential to bridge the gap between cellular and molecular biology in terms of high-resolution visualization. Examples using proteins, viruses, cyanobacteria and somatic cells are provided.  相似文献   

16.
The qualitative distribution and quantitative estimates of nitrogenase (EC 1.7.99.2), glutamine synthetase (EC 6.3.1.2), phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) were studied in the cyanobacterium Nostoc residing in internal cephalodia of the tripartite lichen Nephroma arcticum L. Polyclonal antisera, raised in rabbit against the proteins, and goat anti-rabbit IgG conjugated to 10 nm gold were used as probes to detect the antigens by transmission electron microscopy. Western blot analyses demonstrated the monospecificity of the antisera. Nitrogenase was localized in heterocysts, with vegetative cells showing a label intensity comparable to the background. Distribution of the antigen within the heterocysts was uniform. Glutamine synthetase labelling was very low, but appeared to be distributed in both cell types. An intense phycoerythrin labelling was associated with the thylakoid region of the vegetative cells, whereas a much lower labelling was observed in the heterocyst. No significant differences were found between cyanobionts in younger and older cephalodia except for the nitrogenase labelling, which was higher in heterocysts of the cyanobiont in younger cephalodia. Most of the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) label was present in vegetative cells. The Rubisco label was pronounced in the carboxysomes, whereas the label in the cytoplasm, on a unit area basis, was much lower. Heterocysts showed a label intensity similar to that of the vegetative cell cytoplasm. In Nostoc of the bipartite lichen Peltigera canina L., the Rubisco protein showed a comparable distribution pattern, but the average number of carboxysomes per vegetative cell was about 4 times higher.  相似文献   

17.
Summary Polymerized haemocyanin molecules have been identified as rings, about 25 nm in diameter, forming linear arrays within cytoplasmic vesicles, close to the nucleus. They were observed by transmission electron microscopy in the polygonal cells of the branchial gland of Eledone moschata Lamarck. These observations confirm previous data suggesting that haemocyanin is synthetized in the branchial gland cells of Octopoda.  相似文献   

18.
The architecture of microtubules in mature nematocytes (stinging cells) of Hydra attenuata was investigated in detail by an indirect immunofluorescence study and by scanning and transmission electron microscopy in order to comprehend the function of the cytoskeleton in this extremely complex cell type. Microtubules were detected in all types of nematocytes in the tentacles and were found to be arranged in parallel arrays forming a highly organized basket-like structure around the nematocysts.  相似文献   

19.
The morphological and ultrastructural characteristics of the cyanobacterium Mastigocladus laminosus growing under N2-fixing conditions were examined with light and electron microscopy. Vegetative cells in narrow filaments contained randomly arranged segments of thylakoid membrane, centrally located carboxysomes (polyhedral bodies), peripherally located lipid bodies, and large numbers of polysaccharide granules in addition to nuclear material and ribosomes. The ultrastructural characteristics of cells in wide filaments were similar, except for increased numbers of carboxysomes and lipid bodies. Heterocytes and proheterocysts developed at a variety of locations in narrow filaments, wide filaments, and the lateral branches off of wide filaments. Akinetes were not observed in any of the filaments. The morphological characteristics of heterocysts and proheterocysts were variable and depended on those of the vegative cells from which the heterocysts and proheterocysts developed. Mature M. laminosus heterocysts were somewhat similar to those formed in other cyanobacterial genera, but they possessed a number of distinct and unique ultrastructural characteristics, including (i) the absence of a fibrous and, possibly, a laminated wall layer, (ii) the presence many closely packed membranes throughout most of the cytoplasm, and (iii) the presence of unidentified, spherical inclusion bodies of variable electron density.  相似文献   

20.
The organization of microfilaments and microtubules in cultured cells before and after the addition of cytochalasin B (CB) was studied both by electron microscopy and immunofluorescence microscopy using antibodies specific for actin, tubulin and tropomyosin. CB induces a rapid disorganization of normal microfilament bundles. Star-like patches of actin and tropomyosin are visualized in immunofluorescence microscopy and dense aggregates of condensed microfilaments are seen in electron microscopy. The integrity of the microtubules is not changed by CB treatment. Addition of CB to glycerinated cells, in contrast to normal cells, does not result in the disorganization of microfilament bundles. CB-treated glycerinated models can still contract upon addition of ATP. Thus the CB-induced rearrangement of microfilament bundles occurs only in vivo and not in glycerinated cell contractility models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号