首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epicardial adipose tissue (EAT) expresses lower levels of adiponectin in patients with CAD and higher levels of inflammatory mediators such as IL-6 and leptin than subcutaneous adipose tissue. This showed one important role of EAT in coronary artery disease. However, the relationship of EAT adiponectin and IL-6 levels to the extension of coronary artery disease has not hitherto been determined. We sought to determine whether the levels of adiponectin and interleukin-6 (IL-6) mRNA in epicardial adipose tissue are associated with the extension of coronary artery disease (CAD). Methods: Angiographic and hormones expression were evaluated from epicardial and subcutaneous adipose tissue. 92 patients (58 CAD, 34 non-CAD) who underwent cardiac surgery. Adiponectin and IL-6 mRNA levels were measured by real time RT-PCR in epicardial and subcutaneous adipose tissue (SAT) following angiographic evaluation of their coronary arteries. Results: We found that epicardial adipose tissue of CAD expressed lower levels of adiponectin mRNA and higher levels of IL-6 mRNA than that of non-CAD patients. As the number of injured arteries rose, adiponectin mRNA levels decreased (r = −0.402, p < 0.001) and IL-6 mRNA increased (r = 0.514, p < 0.001) in epicardial adipose tissue. Conclusions: The extension of CAD is significantly associated with the expression of adiponectin and IL-6 mRNA in EAT. These findings suggest that low adiponectin and high IL-6 expression by EAT may contribute to CAD extension.  相似文献   

2.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

3.
4.
ABSTRACT: BACKGROUND: Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis. METHODS: The study population consisted of 90 consecutive subjects (age: 63 +/- 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group. RESULTS: EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 +/- 13 vs. 33 +/- 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 +/- 18 vs. 42 +/- 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia. CONCLUSIONS: Increased EATV is strongly associated with coronary atherosclerosis in men.  相似文献   

5.
Adiponectin, an adipocyte-derived protein, has been shown to have vasculoprotective effects. This study examined the possible relationship between coronary vasomotor function and the transcardiac gradient of adiponectin, reflecting adiponectin utilization and/or accumulation in the coronary vascular bed. The epicardial diameter and blood flow response of the left anterior descending coronary artery to intracoronary infusions of ACh was analyzed in 108 consecutive subjects who had a normal coronary angiogram and left ventriculogram. Adiponectin levels were measured by ELISA in plasma obtained from the aortic root (Ao) and the anterior interventricular vein (AIV). Adiponectin levels in the AIV were lower than levels in the Ao. In multivariate linear regression analysis, the transcardiac gradient of adiponectin (Ao - AIV levels) showed a positive correlation with increases in epicardial coronary diameter and coronary blood flow in response to ACh that was independent of traditional coronary risk factors. The transcardiac gradient of adiponectin was not significantly associated with the coronary dilator response to isosorbide dinitrate and the coronary flow response to sodium nitroprusside. In other groups of patients with coronary spastic angina (n = 41) or microvascular angina (n = 32) who had impaired coronary vasomotor responses, there was no significant gradient of adiponectin between the Ao and AIV. The transcardiac gradient of adiponectin may modulate endothelial vasomotor function in large and resistance coronary arteries and may play a role in the pathogenesis of diseases presenting with coronary vasomotor dysfunction.  相似文献   

6.
7.
Adiponectin is an adipocytes-produced protein and showing a number of antiatherogenic effects. Adiponectin seems to be extensively deposited in the intersticium of venous lesions of persons with myocardial infarction. It may exhibit antiatherogenic and reparative effects. A decreased adiponectin concentration may be a risk factor of the origin and complications of atherosclerosis. AIM OF THE STUDY: 1) Do the adiponectin concentrations in venous blood of persons with acute coronary syndrome (ACS) differ from those in persons with stress angina pectoris? 2) In these persons do adiponectin concentrations in venous blood differ from those in main coronary arteries? 3) Do adiponectin levels differ in the infarction and non-infarction arteries in persons with STEMI (ST Elevation Myocardial Infarct) and delay within 4 hours after the onset? 4) In persons with ACS does any correlation exist between venous adiponectin and common risk factors of cardiovascular complications? Adiponectin concentration was determined in samples of blood collected from the peripheral vein and during coronarography in various localizations in 4 groups of examined persons (I. - no signs of CAD, II. - stable stress angina pectoris, III. - ACS over 48 hours without elevations of ST segment, IV. - STEMI during first 4 hours after its origin and proved occlusion of coronary artery at coronarography). Coronary angiography, risk factors and anamnestic data were analyzed. The software Medcalc was used to perform statistical analysis. We examined 73 probands with signs of myocardial ischemia (mean age of 61.5 years, 64 % males), who were subjected to coronarography and 21 healthy volunteers. A mean delay (delay from the origin of complaints to the performed coronarography) was 3.1 +/- 0.5 hours in individuals in the group IV. In patients with ACS we found lower adiponectin concentrations in venous blood compared to healthy individuals and persons with stress AP, but changes were not statistically significant (I.: -5.9 +/- 2.7 ng/l, II.: -4.9 +/- 1.2 ng/l, III.: -5.2 +/- 4.1 ng/l, IV.: -4.6 +/- 2.7 ng/l); no differences were found also with BMI. No significant difference was recorded between the samples of venous blood and those of coronary arteries, nor between the infarction and the non-infarction arteries in the group IV. (5.2 +/- 2.6 ng/l vs. 4.8 +/- -2.7 ng/l). Significant negative correlations were observed between adiponectin concentrations and BMI (correlation coefficient -0.29), triacylglycerols (correlation coefficient -0.4), AOPP (correlation coefficient -0.39), and positive correlations with HDL (correlation coefficient 0.32). No correlation was recorded between adiponectin and CRP. Adiponectin concentrations in persons with ACS are lower than in healthy persons or patients with stable angina pectoris, but differences are not statistically significant. The absence of adiponectin differences between the infarction/non-infarction artery may support the hypothesis of adiponectin uptake in the ischemic lesion with subsequent decrease in blood adiponectin. On the contrary, adiponectin decrease may be a risk factor independent of the origin and development of ACS.  相似文献   

8.
Obesity, adiponectin and vascular inflammatory disease   总被引:28,自引:0,他引:28  
PURPOSE OF REVIEW: Obesity is the most common risk factor for cardiovascular diseases in industrial countries. It is now clear that adipose tissue secretes various bioactive substances, conceptualized as adipocytokines, and that dysregulation of adipocytokines directly contributes to obesity-related diseases. Chronic inflammatory processes contribute to the development of atherosclerosis. In this review, the authors focus on the relationship between adiponectin, a recently discovered anti-atherogenic adipocytokine, and vascular inflammation. RECENT FINDINGS: Plasma concentrations of adiponectin, an adipocyte-specific protein, are reduced in obese subjects and in patients with type 2 diabetes and coronary artery disease. Adiponectin inhibits the expression of tumor necrosis factor-alpha-induced endothelial adhesion molecules, macrophage-to-foam cell transformation, tumor necrosis factor-alpha expression in macrophages and adipose tissues, and smooth muscle cell proliferation. In addition, adenovirus-expressed adiponectin reduces atherosclerotic lesions in a mouse model of atherosclerosis, and adiponectin-deficient mice exhibit an excessive vascular remodeling response to injury. Clinically, hypoadiponectinemia is closely associated with increased levels of inflammatory markers such as C-reactive protein and interleukin-6. SUMMARY: Adiponectin acts as an anti-inflammatory and anti-atherogenic plasma protein. Adiponectin is an endogenous biologically relevant modulator of vascular remodeling linking obesity and vascular disease.  相似文献   

9.

Aims

S100A9 is a new inflammatory marker associated with obesity and cardiovascular disease. Because epicardial adipose tissue (EAT) is an inflammatory source in coronary artery disease (CAD), our aim was to evaluate the S100A9 levels in plasma and EAT and its association with CAD.

Main methods

Blood, EAT and/or subcutaneous adipose tissue (SAT) biopsies were obtained from 89 patients undergoing elective cardiac surgery. Plasma S100A9 and adiponectin were analyzed by enzyme-linked immunosorbent assay (ELISA) and mRNA expression in both fat pads and were measured by real-time polymerase chain reaction (PCR).

Key findings

Our results have shown higher levels of plasma S100A9 in patients with CAD than those without (29 [10–50] vs. 17 [3–28] ng/mL; p = 0.007). They were dependent on the number of injured-coronaries (p = 0.002) with tendency toward negative association with plasma adiponectin (p = 0.139). Although EAT expressed higher levels than SAT and their levels were higher in CAD patients, this last difference did not reach statistical significance. However, there was a positive correlation between neutrophils and EAT S100A9 expression (p = 0.007) that may reveal an increase of neutrophil filtration on this fat pad.

Significance

Plasma S100A9 levels are increased in chronic CAD. The absence of differences regarding EAT S100A9 expression levels indicates a differential inflammatory process between fat tissues and blood in CAD process.  相似文献   

10.

Introduction

Inflammation contributes to cardiovascular disease and is exacerbated with increased adiposity, particularly omental adiposity; however, the role of epicardial fat is poorly understood.

Methods

For these studies the expression of inflammatory markers was assessed in epicardial fat biopsies from coronary artery bypass grafting (CABG) patients using quantitative RT-PCR. Further, the effects of chronic medications, including statins, as well as peri-operative glucose, insulin and potassium infusion, on gene expression were also assessed. Circulating resistin, CRP, adiponectin and leptin levels were determined to assess inflammation.

Results

The expression of adiponectin, resistin and other adipocytokine mRNAs were comparable to that in omental fat. Epicardial CD45 expression was significantly higher than control depots (p < 0.01) indicating significant infiltration of macrophages. Statin treated patients showed significantly lower epicardial expression of IL-6 mRNA, in comparison with the control abdominal depots (p < 0.001). The serum profile of CABG patients showed significantly higher levels of both CRP (control: 1.28 ± 1.57 μg/mL vs CABG: 9.11 ± 15.7 μg/mL; p < 0.001) and resistin (control: 10.53 ± 0.81 ng/mL vs CABG: 16.8 ± 1.69 ng/mL; p < 0.01) and significantly lower levels of adiponectin (control: 29.1 ± 14.8 μg/mL vs CABG: 11.9 ± 6.0 μg/mL; p < 0.05) when compared to BMI matched controls.

Conclusion

Epicardial and omental fat exhibit a broadly comparable pathogenic mRNA profile, this may arise in part from macrophage infiltration into the epicardial fat. This study highlights that chronic inflammation occurs locally as well as systemically potentially contributing further to the pathogenesis of coronary artery disease.  相似文献   

11.
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. Ten patients undergoing elective cardiac surgery were included into the study. Blood samples and samples of subcutaneous and epicardial adipose tissue were collected at the beginning and at the end of the surgery. Blood glucose, serum insulin and adiponectin levels were measured and mRNA for angiotensinogen, angiotensin-converting enzyme and angiotensin II type 1 receptor were determined in adipose tissue samples using RT PCR. Cardiac surgery significantly increased both insulin and blood glucose levels suggesting the development of insulin resistance, while serum adiponectin levels did not change. Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance.  相似文献   

12.
Omentin-1 and fatty acid-binding protein 4 (FABP4) are adipose tissue adipokines linked to obesity-associated cardiovascular complications. The aim of this study was to investigate epicardial adipose tissue (EAT) omentin-1 and FABP4 gene expression in obese and non-obese patients with coronary artery disease (CAD). Omentin-1 and FABP4 mRNA levels in EAT and paired subcutaneous adipose tissue (SAT) as well as adipokine serum concentrations were assessed in 77 individuals (61 with CAD; 16 without CAD (NCAD)). EAT FABP4 mRNA level was decreased in obese CAD patients when compared to obese NCAD individuals (p=0.001). SAT FABP4 mRNA level was decreased in CAD patients compared to NCAD individuals without respect to their obesity status (p=0.001). Omentin-1 mRNA level in EAT and SAT did not differ between the CAD and NCAD groups. These findings suggest that omentin-1 gene expression in adipose tissue is not changed during CAD; downregulated FABP4 gene expression in SAT is associated with CAD while EAT FABP4 gene expression is decreased only in obesity-related CAD.  相似文献   

13.
Adiponectin is an abundantly expressed adipokine in adipose tissue and has direct insulin sensitizing activity. A decrease in the circulating levels of adiponectin by interactions between genetic factors and environmental factors causing obesity has been shown to contribute to the development of insulin resistance, type 2 diabetes, metabolic syndrome and atherosclerosis. In addition to its insulin sensitizing actions, adiponectin has central actions in the regulation of energy homeostasis. Adiponectin enhances AMP-activated protein kinase activity in the arcuate hypothalamus via its receptor AdipoR1 to stimulate food intake and decreases energy expenditure. We propose a hypothesis on the physiological role of adiponectin: a starvation gene in the course of evolution by promoting fat storage on facing the loss of adiposity.  相似文献   

14.
The purpose of this study was to determine the effects of exercise training on ventricular epicardial fat thickness in obese men and to investigate the relationship of the change in epicardial fat thickness to changes in abdominal fat tissue following exercise training. Twenty-four obese middle-aged men [age, 49.4 +/- 9.6 yr; weight, 87.7 +/- 11.2 kg; body mass index (BMI), 30.7 +/- 3.3 kg/m(2); peak oxygen consumption, 28.4 +/- 7.2 ml.kg(-1).min(-1); means +/- SD] participated in this study. Each participant completed a 12-wk supervised exercise training program (60-70% of the maximal heart rate; 60 min/day, 3 days/wk) and underwent a transthoracic echocardiography. The epicardial fat thickness on the free wall of the right ventricle was measured from both parasternal long- and short-axis views. The visceral adipose tissue (VAT) and subcutaneous adipose tissues were measured by computed tomography. Following exercise training, the epicardial fat thickness was significantly decreased (P < 0.001). The percentage change of epicardial fat thickness was twice as high compared with those of waist, BMI, and body weight of original values (P <0.05). There was a significant relationship (r = 0.525, P = 0.008) between changes in the epicardial fat thickness and VAT with exercise training. Stepwise multiple regression analysis revealed that the change in VAT, change in systolic blood pressure, and change in quantitative insulin sensitivity check index were independently related to the change epicardial fat thickness (P < 0.05). The ventricular epicardial fat thickness is reduced significantly after aerobic exercise training and is associated with a decrease in VAT. These results suggest that aerobic exercise training may be an effective nonpharmacological strategy for decreasing the ventricular epicardial fat thickness and visceral fat area in obese middle-aged men.  相似文献   

15.
Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.  相似文献   

16.
Adipokines are predominantly secretory protein hormones from adipose tissue but may also originate in placenta and other organs. Cross-sectionally, we monitored maternal plasma concentration of adiponectin, resistin, and leptin and their mRNA expression in abdominal subcutaneous adipose tissue and placenta from preeclamptic (PE; n = 15) and healthy pregnant (HP; n = 23) women undergoing caesarean section. The study groups were similar in age and BMI, whereas HOMA-IR tended to be higher in the PE group. In fasting plasma samples, the PE group had higher concentrations of adiponectin (18.3 +/- 2.2 vs. 12.2 +/- 1.1 microg/ml, P = 0.011), resistin (5.68 +/- 0.41 vs. 4.65 +/- 0.32 ng/ml, P = 0.028), and leptin (34.4 +/- 3.2 vs. 22.7 +/- 2.1 ng/ml, P = 0.003) compared with the HP group. Adiponectin and leptin concentrations were still different between PE and HP after controlling for BMI and HOMA-IR, whereas resistin concentrations differed only after controlling for BMI but not HOMA-IR. We found similar mean mRNA levels of adiponectin, resistin, and leptin in abdominal subcutaneous adipose tissue in PE and HP women. When data were pooled from PE and HP women, resistin mRNA levels in adipose tissue also correlated with HOMA-IR (r = 0.470, P = 0.012) after controlling for BMI and pregnancy duration. Resistin mRNA levels in placenta were not significantly different between PE and HP, whereas leptin mRNA levels were higher in PE placenta compared with HP. Thus increased plasma concentrations of adiponectin and resistin in preeclampsia may not relate to altered expression levels in adipose tissue and placenta, whereas both plasma and placenta mRNA levels of leptin are increased in preeclampsia.  相似文献   

17.
Adiponectin, an adipose tissue secreted protein, exhibits anti-inflammatory and antiatherogenic properties. We examined the effects of the globular and full-length adiponectin on cytokine production in macrophages derived from Coronary Artery Disease (CAD) patients and control individuals. Adiponectin's effects in human macrophages upon lipopolysaccharide (LPS) treatment were also examined. Full length adiponectin acted differently on TNF-α and IL-6 production by upregulating TNF-α and IL-6 protein production, but not their mRNA expression. Additionally, full length adiponectin was unable to abrogate LPS proinflammatory effect in TNF-α and IL-6 mRNA expression in CAD and NON-CAD macrophages. In contrast, globular adiponectin appeared to have proinflammatory properties by potently upregulating TNF-α and IL-6 mRNA and protein secretion in human macrophages while subsequently rendered cells resistant to further proinflammatory stimuli. Moreover, both forms of adiponectin powerfully suppressed scavenger MSR-AI mRNA expression and augmented IL-10 protein release, both occurring independently of the presence of LPS or CAD. These data indicate that adiponectin could potentially protect human macrophages via the elevated IL-10 secretion and the suppression of MSR-AI expression. It can also be protective in CAD patients since the reduced adiponectin-induced IL-6 release in CAD macrophages compared to controls, could be beneficial in the development of inflammation related atherosclerosis.  相似文献   

18.
Obesity is associated with low grade inflammation. Whether this is just an adaptive response to excess adiposity to maintain a normal oxygen supply or a chronic activation of the innate immune system is still unknown. Recent research has focused on the origin of the inflammatory markers in obesity and the extent to which adipose tissue has a direct effect. The production of adipokines by visceral adipose tissue is of particular interest since their local secretion by visceral fat depots may provide a novel mechanistic link between obesity and the associated vascular complications. Growing evidences suggest that the epicardial adipose tissue, the visceral fat depot located around the heart, may locally interact with myocardium and coronary arteries. Epicardial fat is a source of adiponectin and adrenomedullin, adipokines with anti-inflammatory properties, and several proinflammatory cytokines as well as Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin 1 (IL1), IL-1 h, Interleukin (IL6), Monocyte Chemoattractive Protein-1 (MCP-1), Nerve Growth Factor (NGF), resistin, Plasminogen Activator Inhibitor-1 (PAI-1), and free fatty acids. Epicardial adipose tissue could locally modulate the heart and vasculature, through paracrine secretion of pro- and anti-inflammatory cytokines, thereby playing a possible role in the adiposity-related inflammation and atherosclerosis. On the other hand, epicardial fat could exert a protective effect through adiponectin and adrenomedullin secretion as response to local or systemic metabolic or mechanical insults. Future studies will continue to provide new and fascinating insights into the double role of epicardial adipose tissue in the development of cardiovascular pathology and/or in protecting the heart and arteries.  相似文献   

19.
Obesity promotes increased secretion of a number of inflammatory factors from adipose tissue. These factors include cytokines and very lately, extracellular matrix components (ECM). Biglycan, a small leucine rich proteoglycan ECM protein, is up-regulated in obesity and has recently been recognized as a pro-inflammatory molecule. However, it is unknown whether biglycan contributes to adipose tissue dysfunction. In the present study, we characterized biglycan expression in various adipose depots in wild-type mice fed a low fat diet (LFD) or obesity-inducing high fat diet (HFD). High fat feeding induced biglycan mRNA expression in multiple adipose depots. Adiponectin is an adipokine with anti-inflammatory and insulin sensitizing effects. Due to the importance of adiponectin, we examined the effect of biglycan on adiponectin expression. Comparison of adiponectin expression in biglycan knockout (bgn−/0) and wild-type (bgn+/0) reveals higher adiponectin mRNA and protein in epididymal white adipose tissue in bgn−/0 mice, as well higher serum concentration of adiponectin, and lower serum insulin concentration. On the contrary, knockdown of biglycan in 3T3-L1 adipocytes led to decreased expression and secretion of adiponectin. Furthermore, treatment of 3T3-L1 adipocytes with conditioned medium from biglycan treated macrophages resulted in an increase in adiponectin mRNA expression. These data suggest a link between biglycan and adiponectin expression. However, the difference in the pattern of regulation between in vivo and in vitro settings reveals the complexity of this relationship.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号