首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The sterol content in Saccharomyces cerevisiae mutants defective in the synthesis of cyclic ergosterol precursors has been studied. It was found that strains with mutational blocks involving the stages of zymosterol side chain methylation at C24 and delta 8----delta 7 isomerization accumulated twice more sterols as compared to parent strains. Regulation of the ergosterol biosynthesis is discussed.  相似文献   

2.
The effect of low concentrations of a specifically designed sterol-24-transmethylase inhibitor, 25-aza-24, 25-dihydrozymosterol (10) on sterol production in Saccharomyces cerevisiae was examined. The synthesis of cholesta-5,7,22,24-tetraen-3beta-ol (4), its 7,22,24 analog (15) and the 7,24 analog (5) coupled with the availability of zymosterol (6) and cholesta-5,7,24-3beta-ol (3) derivatives facilitated a search for these sterols in cultures treated with this inhibitor. When S. cerevisiae was grown in the presence of 1.3 and 5 muM 10, it produced no ergosterol but accumulated zymosterol (6), cholesta-5,7,22,24-tetraen-3beta-ol (4) and related C27 sterols (3 and 5). These results indicate blockage of the side chain methylation that normally occurs during the biosynthesis of ergosterol in yeast by compound 10 is efficient. The cholesta-5,7,22,24-tetraen-3beta-ol is a close structural analog of provitamin D3 (7-dehydrocholesterol). The inhibited yeast thus provides a source of a potentially new provitamin D3 substitute.  相似文献   

3.
The effects of 23-azacholesterol on sterol biosynthesis and growth of Saccharomyces cervisiae were examined. In the presence of 0.2, 0.5, and 1 micron 23-azacholesterol, aerobically-growing yeast produced a nearly constant amount of ergosta-5,7,22,24(28)-tetraenol (approx. 36% of total sterol) and slowly accumulated zymosterol with a concommitant decline in ergosterol synthesis. Growth and total sterol content of yeast cultures treated with 0.2-1 micron 23-azacholesterol were similar to that of the control culture. Yeast cultures treated with 5 and 10 micron 23-azacholesterol produced mostly zymosterol (58-61% of total sterol), while ergosta-5,7,22,24(28)-tetraenol production declined to less than 10% of total sterol. The observed changes in the distribution of sterols in treated cultures are consistent with inhibition of 24-methylene sterol 24(28)-sterol reductase (total inhibition at 1 micron 23-azacholesterol) and of 24-sterol methyltransferase (71% inhibition at 10 micron 23-azacholesterol). Yeast cultures treated with 10 micron 23-azacholesterol were found to contain 4,4-dimethylcholesta-8,14,24-trienol and 4alpha-methylcholesta-8,14,24-trienol, which were isolated and characterized for the first time.  相似文献   

4.
To obtain mutants containing altered sterol composition and sterol contents, nystatin-resistant mutants were isolated in Zygosaccharomyces rouxii. Two of nine mutants isolated were resistant toward 20 μg of nystatin per ml, while the other seven showed resistance toward 50 μg per ml. However, the seven mutants could not grow at 35°C. TN5, a mutant of the first group, showed the same sterol composition as the wild type strain, with ergosterol and zymosterol as major sterols, whereas it contained free sterols about 70% of those of the wild type. TN1 and TN3, representative mutants of the second group, had altered sterol compositions, containing three major sterols, zymosterol, ergosta-5,7,24-trienol, and an unidentified sterol. TN1 and TN3 could not grow in YPD medium containing more than 8% NaCl, whereas TN5 grew in the same medium containing 15% NaCl after a longer lag phase than the wild type strain. TN1 and TN3, in particular TN3, when incubated in YPD medium containing 15% NaCl, leaked significant amounts of glycerol. Protoplasts of these mutants were more labile than those of the wild-type cells. These facts suggest that the amount and kind of ergosterol in the cell membrane might be concerned with the salt tolerance of Z. rouxii.  相似文献   

5.
For extraction of free and esterified sterols from yeast cells, a method was devised in which both forms of sterols were extracted with light petroleum after the treatment of the cells with acetone, and then with dimethylsulfoxide. The content of sterol esters in the cells under aerobic conditions markedly increased with time, amounting to 95% of the total sterols under some conditions. However, the formed sterol esters were decreased, accompanied with an increase of free sterols, when the cells were put under anaerobic conditions. Variations of radioactivities of both sterols which had been labeled in the side chain by incubation of the cells with [Me[-14C]methionine were examined on the cells grown under various conditions. No variation was observed on the cells under aerobic conditions. On the other hand, the labeled esters were hydrolyzed to yield free sterols in the cells under anaerobic conditions. In the cells under aerobic conditions, the free sterols were found to consist mainly of ergosterol, whereas the esterified sterols contained considerable amounts of zymosterol, lanosterol, and other intermediate sterols besides ergosterol.  相似文献   

6.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

7.
Structural analogs of S-adenosylhomocysteine were tested in vitro for inhibition of the yeast S-adenosylmethionine:delta 24-sterol-C-methyltransferase enzyme. A wide inhibitory range by these compounds was observed, suggesting which structural features of the parent compound are important for binding to the enzyme. No analog tested had inhibitory activity specific only for this enzyme. The most active compound was sinefungin, a metabolite of Streptomyces griseolus, which was also able to inhibit growth of yeast cultures. Sterol extracts of cells grown in the presence of sinefungin revealed a dramatic increase in the levels of zymosterol, the sterol substrate in the transmethylation under study, and a concomitant decrease in the levels of ergosterol. Evidence is presented that sinefungin is transported inside the cell by the same permease as S-adenosylmethionine. We conclude that sinefungin is blocking the in vivo methylation of sterols in yeast. The implications of this finding are discussed.  相似文献   

8.
E Zinser  F Paltauf    G Daum 《Journal of bacteriology》1993,175(10):2853-2858
Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergosterol, large amounts of zymosterol, fecosterol, and episterol. These sterols are present esterified with long-chain fatty acids in this subcellular compartment, which also harbors practically all of the triacylglycerols present in the cell but very little phospholipids and proteins. Sterol delta 24-methyltransferase, an enzyme that catalyzes one of the late steps in sterol biosynthesis, was localized almost exclusively in lipid particles. Steryl ester formation is a microsomal process, whereas steryl ester hydrolysis occurs in the plasma membrane and in secretory vesicles. The fact that synthesis, storage, and hydrolysis of steryl esters occur in different subcellular compartments gives rise to the view that ergosteryl esters of lipid particles might serve as intermediates for the supply of ergosterol from internal membranes to the plasma membrane.  相似文献   

9.
10.
Regulation by heme of sterol uptake in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The leaky heme mutants G204, G216, and G214 are shown to accumulate exogenous sterols. Unlike hem mutants which have complete blocks in the heme pathway, these strains do not require ergosterol, methionine, or unsaturated fatty acids for growth. The addition of aminolevulinic acid to the growth medium inhibited sterol uptake in G204 96% but had only a slight effect on sterol uptake by strains G214 and G216. Sterol uptake in all three strains was inhibited 83-94% when cells were grown in the presence of hematin. Sterol analysis of these strains grown in the presence and absence of either aminolevulinic acid or hematin revealed that saturation of the cell membrane with ergosterol was not responsible for the dramatic decrease in sterol uptake. These results suggest that sterol uptake by yeast cells is controlled by heme, and explain the non-viability of yeast strains that are heme competent and auxotrophic for sterols.  相似文献   

11.
A cell-free system has been obtained from Saccharomyces cerevisiae which is capable of efficiently converting lanosterol1 to a mixture of 4-demethyl sterols, quantitatively the most important identifiable component of which was zymosterol. Little or no ergosterol was synthesized. In the presence of carbon monoxide, the rate of zymosterol biosynthesis from lanosterol was decreased by 57% compared with that observed in control incubations and the amount of unmetabolized lanosterol was greater. Mitochondrial electron transport inhibitors such as cyanide and antimycin A had no effect on the overall rate of 4-demethyl sterol biosynthesis from lanosterol nor on the degree of inhibition by carbon monoxide.  相似文献   

12.
The yeast Saccharomyces cerevisiae is a useful model system for examining the biosynthesis of sterols in eukaryotic cells. To investigate underlying regulation mechanisms, a flux analysis of the ergosterol pathway was performed. A stoichiometric model was derived based on well known biochemistry of the pathway. The model was integrated in the Software COMPFlux which uses a global optimization algorithm for the estimation of intracellular fluxes. Sterol concentration patterns were determined by gas chromatography in aerobic and anaerobic batch cultivations, when the sterol metabolism was suppressed due to the absence of oxygen. In addition, the sterol concentrations were observed in a cultivation which was shifted from anaerobic to aerobic growth conditions causing the sterol pools in the cell to be filled. From time-dependent flux patterns, possible limitations in the pathway could be localized and the esterification of sterols was identified as an integral part of regulation in ergosterol biosynthesis.  相似文献   

13.
Analysis of sterols in mycelia of the ascomycete, Leptosphaeria maculans by gas chromatography-mass spectrometry revealed that ergosterol comprised 95% of the total sterols, with eight other sterols comprising the remaining 5%. Six of these latter sterols were putative precursors of ergosterol and their presence suggested a pathway for ergosterol biosynthesis in this fungus. Ergosterol biosynthesis in fungi is inhibited by the triazole antifungal agent flutriafol. When L. maculans was grown in the presence of flutriafol, ergosterol content decreased while two 14 alpha-methylated sterols, 24-methylene dihydrolanosterol and obtusifoliol, accumulated.  相似文献   

14.
The level of sterols in S. carlsbergensis 4228 cells grown aerobically on a synthetic medium fortified with thiamine was significantly low compared with that in the control cells. The levels of free and esterified sterols in the thiamine-cells were 60% and 10% of the corresponding sterol levels in the control cells, respectively. Analysis by gas-liquid chromatography of non-saponifiable lipids extracted from the cells revealed that the amounts of squalene, lanosterol and two unidentified sterols were higher than those in the control cells and that ergosterol and zymosterol, major sterols in the control cells, were not present. These effects of thiamine on the content and composition of sterols were abolished by the addition of pyridoxine to the medium.  相似文献   

15.
Saccharomyces cerevisiae, grown aerobically or anaerobically under conditions which induce a requirement for a sterol and an unsaturated fatty acid, synthesized approximately the same amounts of neutral lipid and intracellular low-density vesicles, although the neutral lipids in aerobically-grown cells contained more esterified sterol and less triacylglycerol than those in anaerobically-grown cells. Kluyveromyces fragilis synthesized much less neutral lipid and a smaller quantity of low-density vesicles than S. cerevisiae whether grown at 30°C (generation time 1.1 h) or 20°C (generation time 2.1 h). Both yeasts synthesized highly saturated triacylglycerols, relatively unsaturated phospholipids, and esterified sterols with an intermediate degree of unsaturation irrespective of the conditions under which they were grown. Free sterols in the yeasts were rich in ergosterol and 22(24)-dehydroergosterol, while the esterified sterol fractions were richer in zymosterol.  相似文献   

16.
A wild type strain of yeast, Saccharomyces cerevisiae, pretreated with a mild acid hydrolysis, exhibited a 4-fold increase in sterol yield upon saponification and extraction. This increased yield is reflected in both major and minor sterols (ergosterol; zymosterol) and sterol esters.  相似文献   

17.
18.
A citric-acid-producing Aspergillus niger strain was cultivated in conditions favouring citric acid biosynthesis and in conditions hindering it. During both extreme processes, the mycelia were analysed for their lipid content, individual lipid classes, the content of sterols and free fatty acids. Since phospholipids, especially phosphatidylcholine and sterols, play an essential role in membrane permeability one can conclude that the differences observed substantially contribute to citric acid excretion into fermentation media. The difference in sterol composition was the most pronounced. Citric-acid-excreting mycelia contained lower quantities of sterols and ergosterol was the only component. A. niger mycelia grown in conditions hindering citric acid accumulation contained higher amounts of sterols with ergosterol as the main component and six other sterol components representing a minor amount.Offprint requests to: K. Jernejc  相似文献   

19.
Nystatin-Resistant Mutants of Yeast: Alterations in Sterol Content   总被引:15,自引:3,他引:12       下载免费PDF全文
Mutants of the genes nys1 and nys3 differ from sensitive strains (nys(+)) in their sterol content. Ultraviolet absorption spectra of the nonsaponifiable material extracted from cells of nys(+) demonstrated the presence of ergosterol and 24(28)-dehydroergosterol. In nys1 mutants, the spectrum suggests the presence of a new sterol. The absorption spectrum of extracts from nys3 mutants indicates absence of both ergosterol and 24(28)-dehydroergosterol and presence of another new sterol. Conversion of nys(+) and nys3 to petite results in loss of 24(28)-dehydroergosterol in the former and the new sterol in the latter, whereas the new sterol in nys1 is only reduced. The sterols in ethanol-grown cells of all genotypes are essentially the same as is found for growth on glucose. With the exception of nys3 grown on ethanol, the mutants do not appear to be at a disadvantage compared to wild type.  相似文献   

20.
Sterol methyltransferase (SMT) plays a key role in sterol biosynthesis in different pathogenic organisms by setting the pattern of the side chain structure of the final product. This catalyst, absent in humans, provides critical pathway-specific enzymatic steps in the production of ergosterol in fungi or phytosterols in plants. The new SMT gene was isolated from Trypanosoma brucei genomic DNA and cloned into an Escherichia coli expression system. The recombinant SMT was purified to homogeneity to give a band at 40.0 kDa upon SDS-PAGE and showed a tetrameric subunit organization by gel chromatography. It has a pH optimum of 7.5, an apparent kcat value of 0.01 s(-1), and a Km of 47 +/- 4 microm for zymosterol. The products of the reaction were a mixture of C24-monoalkylated sterols, ergosta-8,24 (25)-dienol, ergosta-8,25 (27)-dienol, and ergosta-8,24 (28)-dienol (fecosterol), and an unusual double C24-alkylated sterol, 24,24-dimethyl ergosta-8,25 (27)-dienol, typically found in plants. Inhibitory profile studies with 25-azalanosterol (Ki value of 39 nm) or 24(R,S), 25-epiminolanosterol (Ki value of 49 nm), ergosterol (Ki value of 27 microm) and 26,27-dehydrozymosterol (Ki and kinact values of 29 microm and 0.26 min(-1), respectively) and data showing zymosterol as the preferred acceptor strongly suggest that the protozoan SMT has an active site topography combining properties of the SMT1 from plants and yeast (37-47% identity). The enzymatic activation of this and other SMTs reveals that the catalytic requirements for the C-methyl reaction are remarkably versatile, whereas the inhibition studies provide a powerful approach to rational design of new anti-sleeping sickness chemotherapeutic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号