首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral Reefs - The remoteness of the northern Great Barrier Reef makes observations of environmental change and coral health sparse, but provides opportunities for paleoclimate and paleoecology...  相似文献   

2.
3.
Long-term (millennial timescale) records of coral community structure can be developed from the analysis of corals preserved in radiometrically dated reef cores. Here, we present such a record (based on six cores) from Lugger Shoal, a turbid zone, nearshore reef on the inner-shelf of the central Great Barrier Reef. Lugger Shoal initiated growth ~800 cal yBP. It is constructed of large in situ Porites bommies, between which a framework of coral rubble (dominated by Acropora pulchra, Montipora mollis, Galaxea fascicularis and Cyphastrea serailia) has accumulated. Reef accretion occurred under conditions of net long-term fine-grained, terrigenous sediment accumulation, and with a coral community dominated throughout by a consistent, but low diversity, suite of coral taxa. This dataset supports recent suggestions that nearshore coral communities that establish themselves under conditions that are already close to the thresholds for coral survival may be resilient to water quality deteriorations associated with human activities.  相似文献   

4.
Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample “10AR2,” with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = ?0.67, n = 73, p < 0.0000001) and rainfall records (r = ?0.34, n = 67, p < 0.01). However, a slower growing coral sample, “10AR1” showed significantly lower correlations (r = ?0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = ?0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.  相似文献   

5.
Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown‐of‐thorns starfish (COTS), nutrients from river run‐off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017–2050) indicate significant potential for coral recovery in the near‐term, relative to current state, followed by climate‐driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business‐as‐usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate‐driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR‐wide reef performance will decline 27%–74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions.  相似文献   

6.
Time-series are presented of wind, sea levels, currents and temperature in the central region of the Great Barrier Reef continental shelf over the period 1980 to 1982 (inclusive). Except for occasional periods of calm weather or during the passage of tropical cyclones, the wind was alternately southwestward or northwestward, with periods of several days to several weeks. The fluctuations of the low-frequency sea level, longshore current and wind components, but not temperature, were highly coherent over distances >400 km longshore and over the shelf width. The temperature and the atmospheric pressure controlled much of the seasonal changes in the sea level. A simple model for wind-driven circulation using a non-linear bottom friction law is able to account for most of the variance of the currents with perios <20 days. An additional poleward base flow was present at all sites, probably driven by the circulation in the Coral Sea. There were also large interannual variations, possibly associated with the El Niño Southern Oscillation phenomena. These observations imply that the advection and dispersion over the Great Barrier Reef of fish eggs and larvae, coral planulae etc., and hence reef recruitment, experience considerable variability at time scales of days of years.  相似文献   

7.
Coral reef sponge populations were surveyed at two spatial scales: different depths and different reef locations across the continental shelf of the central Great Barrier Reef. The surveys were conducted on the forereef slopes of 12 reefs from land-influenced, inner-shelf reefs to those in the oligotrophic waters of the Coral Sea. Few sponges occur in shallow waters and the largest populations are found between 10 and 30 m depth. Sponges are apparently excluded from shallow waters because of excessive turbulence and possibly by high levels of damaging light. Sponge biomass is highest on the innershelf reefs and decreases away from the coast, whereas abundance is generally higher on middle-shelf reefs. There are considerable overlaps in the species composition on middle-, outer-shelf and Coral Sea reefs, but those on inner-shelf reefs are significantly different. The nature and size of sponge populations reflect environmental conditions across the continental shelf. The larger inner-shelf populations probably reflect higher levels of organic and inorganic nutrients and reduced amounts of physical turbulence, whereas sponges on reefs further from shore may be able to resist greater turbulence but appear more sensitive to the effects of fine sediments. These latter populations are smaller, reflecting the reduced availability of organic matter, however, many of these sponges rely on cyanobacterial symbionts to augment nutrition in these clearer, more oligotrophic waters.Contribution no. 487 from the Australian Institute of Marine Science  相似文献   

8.
Distribution patterns of soft coral genera were examined at 11 reefs situated in a broad transect from inshore to the Coral Sea in the central region of the Great Barrier Reef. Twenty-five genera representing the Orders Alcyonacea and Stolonifera were recorded, and the survey also included one genus of the Order Gorgonacea. Total living soft coral cover is greatest on outershelf reef slopes, and is often less than and inversely related to the cover by stony corals. Soft coral diversity is generally low on reef flats, where soft coral cover is low or nil except in protected, inshore areas. The most diverse assemblages occur on reef slopes in midshelf and outershelf areas, where Efflatounaria and nephtheid genera predominate, and widely distributed alcyoniid genera are common. These richer assemblages are less well represented in the Coral Sea, while innershelf reefs support a less diverse fauna of somewhat different generic composition. Distribution patterns of soft corals across the transect broadly match similar variations in the distributions of stony corals and fishes, inshore reefs being generally depauperate. Such variations across the continental shelf are closely associated with changes in prevailing environmental conditions, but further research will be required to elucidate the effects of environmental parameters on benthic community structure.  相似文献   

9.
Temporal and spatial variation in the growth parameters skeletal density, linear extension and calcification rate in massive Porites from two nearshore regions of the northern Great Barrier Reef (GBR) were examined over a 16‐year study period. Calcification rates in massive Porites have declined by approximately 21% in two regions on the GBR ~450 km apart. This is a function primarily of a decrease in linear extension (~16%) with a smaller decline in skeletal density (~6%) and contrasts with previous studies on the environmental controls on growth of massive Porites on the GBR. Changes in the growth parameters were linear over time. Averaged across colonies, skeletal density declined over time from 1.32 g cm?3 (SE = 0.017) in 1988 to 1.25 g cm?3 (0.013) in 2003, equivalent to 0.36% yr?1 (0.13). Annual extension declined from 1.52 cm yr?1 (0.035) to 1.28 cm yr?1 (0.026), equivalent to 1.02% yr?1 (0.39). Calcification rates (the product of skeletal density and annual extension) declined from 1.96 g cm?2 yr?1 (0.049) to 1.59 g cm?2 yr?1 (0.041), equivalent to 1.29% yr?1 (0.30). Mean annual seawater temperatures had no effect on skeletal density, but a modal effect on annual extension and calcification with maxima at ~26.7 °C. There were minor differences in the growth parameters between regions. A decline in coral calcification of this magnitude with increasing seawater temperatures is unprecedented in recent centuries based on analysis of growth records from long cores of massive Porites. We discuss the decline in calcification within the context of known environmental controls on coral growth. Although our findings are consistent with studies of the synergistic effect of elevated seawater temperatures and pCO2 on coral calcification, we conclude that further data on seawater chemistry of the GBR are required to better understand the links between environmental change and effects on coral growth.  相似文献   

10.
To build new tools for the continued protection and propagation of coral from the Great Barrier Reef (GBR), an international group of coral and cryopreservation scientists known as the Reef Recovery Initiative joined forces during the November 2011 mass-spawning event. The outcome was the creation of the first frozen bank for Australian coral from two important GBR reef-building species, Acropora tenuis and Acropora millepora. Approximately 190 frozen samples each with billions of cells were placed into long-term storage. Sperm cells were successfully cryopreserved, and after thawing, samples were used to fertilize eggs, resulting in functioning larvae. Additionally, developing larvae were dissociated, and these pluripotent cells were cryopreserved and viable after thawing. Now, we are in a unique position to move our work from the laboratory to the reefs to develop collaborative, practical conservation management tools to help secure Australia's coral biodiversity.  相似文献   

11.
Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembly). The processes underlying such changes are not well understood due to a scarcity of long-term studies with sufficient taxonomic resolution. We assessed the trajectories and time frames for coral recovery and reassembly of coral communities following disturbances, using modeled trajectories based on data from a broad spatial and temporal monitoring program. We studied coral communities at six reefs that suffered substantial coral loss and subsequently regained at least 50 % of their pre-disturbance coral cover. Five of the six communities regained their coral cover and the rates were remarkably consistent, taking 7–10 years. Four of the six communities reassembled to their pre-disturbance composition in 8–13 years. The coral communities at three of the reefs both regained coral cover and reassembled ten years. The trajectories of two communities suggested that they were unlikely to reassemble and the remaining community did not regain pre-disturbance coral cover. The communities that regained coral cover and reassembled had high relative abundance of tabulate Acropora spp. Coral communities of this composition appear likely to persist in a regime of pulse disturbances at intervals of ten years or more. Communities that failed to either regain coral cover or reassemble were in near-shore locations and had high relative abundance of Porites spp. and soft corals. Under current disturbance regimes, these communities are unlikely to re-establish their pre-disturbance community composition.  相似文献   

12.
Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO43- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO43- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.  相似文献   

13.
In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high‐resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown‐of‐thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2, predicting a mean annual coral loss of ?0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner‐shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no‐take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.  相似文献   

14.
High concentrations of acrylate, 542–683 μmol g−1 of the non-skeletal dry mass (DM), were measured in the Great Barrier Reef coral, Acropora millepora, using quantitative nuclear magnetic resonance spectroscopy (qNMR). As the amount of NaCl salt in the samples was substantial but variable, the total carbon (TC) in the coral extracts was determined, and the carbon due to acrylate found to represent 13–15% of the TC present in the total organic extracts (TOE). Acrylate, a C3 compound, is thus a substantial carbon source in the coral holobiont and is known to be derived from dimethylsulfoniopropionate (DMSP), which has previously been found in corals and other organisms that harbor Symbiodinium spp. The reason for such high levels of acrylate in the corals is unknown; possible functions include antimicrobial and/or antioxidant roles, as well as playing a role in the structuring of the healthy resident coral bacteria.  相似文献   

15.
The morphological life-forms, that is to say, physiognomic-structural attributes, of two coral reef communities were used in a numerical analysis to determine the power of these attributes in recovering the underlying community structure. We used 17 attributes from the benthic communities at 6 reef slope sites on each of a midshelf and off-shore reef of the central Great Barrier Reef. These reefs had been previously well studied by traditional species-level means for several major taxonomic groups such as corals, fish and soft corals. Our multivariate analyses were able to recover broad patterns of between-reef affinity and discrete within-reef zonation patterns similar to those found in earlier studies, and in broad accord with the prevailing model of reef community structure, but with far greater efficacy. But perhaps more importantly, by placing all the benthos within the same context for the first time, our analyses were able to recover new patterns of community structure independent of the ones described earlier. This suggests that single-model explantations for the complex phenomena of coral reefs are likely to be inadequate.  相似文献   

16.
Links between anomalously high sea temperatures and outbreaks of coral diseases known as White Syndromes (WS) represent a threat to Indo-Pacific reefs that is expected to escalate in a changing climate. Further advances in understanding disease aetiologies, determining the relative importance of potential risk factors for outbreaks and in trialing management actions are hampered by not knowing where or when outbreaks will occur. Here, we develop a tool to target research and monitoring of WS outbreaks in the Great Barrier Reef (GBR). The tool is based on an empirical regression model and takes the form of user-friendly interactive ~1.5-km resolution maps. The maps denote locations where long-term monitoring suggests that coral cover exceeds 26% and summer temperature stress (measured by a temperature metric termed the mean positive summer anomaly) is equal to or exceeds that experienced at sites in 2002 where the only severe WS outbreaks documented on the GBR to date were observed. No WS outbreaks were subsequently documented at 45 routinely surveyed sites from 2003 to 2008, and model hindcasts for this period indicate that outbreak likelihood was never high. In 2009, the model indicated that outbreak likelihood was high at north-central GBR sites. The results of the regression model and targeted surveys in 2009 revealed that the threshold host density for an outbreak decreases as thermal stress increases, suggesting that bleaching could be a more important precursor to WS outbreaks than previously anticipated, given that bleaching was severe at outbreak sites in 2002 but not at any of the surveyed sites in 2009. The iterative approach used here has led to an improved understanding of disease causation, will facilitate management responses and can be applied to other coral diseases and/or other regions.  相似文献   

17.
18.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

19.
20.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号