首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.  相似文献   

2.
3.
Aim We examined comparative data for cryptobenthic reef fishes to determine how variation in regional species richness relates to local species richness, abundance, and taxonomic and trophic composition, and to test whether systems with higher species richness exhibit finer habitat partitioning. Locations Lizard Island, Great Barrier Reef (GBR), Australia; Bahía de Loreto, Gulf of California (GoC), Mexico. Methods Cryptobenthic reef fish assemblages from four habitats (coral heads, rubble, and horizontal and vertical surfaces of boulders) were collected using clove oil. Differences in density, species richness and biomass were examined between regions and among habitats. Habitat associations were identified for each habitat/location based on multivariate ordination, and the statistical significance of patterns was tested using analysis of similarity (ANOSIM). In addition, the trophic group composition of the assemblages for both regions was examined. Results A total of 91 species in 20 families were recorded (GBR, 66 species; GoC, 25 species). Total and habitat species richness were higher on the GBR, whereas biomass was higher in the GoC. No difference in fish density between regions was found. Habitat division among assemblages was greater in the depauperate GoC. Only coral head associations proved to be distinctive on the GBR, whereas three sample groups were found in the GoC (coral heads, horizontal boulders and vertical boulders/rubble). Trophic composition in the two regions was markedly different, with omnivores dominating the GBR fauna and planktivores the GoC. Main conclusions A positive regional–local relationship in fish diversity was found between regions, but fish abundance in both regions remained similar. Contrary to expectations, habitat partitioning, at a community level, was greater in the depauperate GoC. Differences in trophic composition and patterns of habitat use appear to reflect the disparate history of the regions, whereas patterns of abundance may reflect the influence of fundamental relationships between size and abundance in communities. This study highlights the potential of reef faunas to conform to universal numerical trends while maintaining an ability to respond ecologically to local/evolutionary influences. The GoC fauna appears to be exceptionally vulnerable to natural and anthropogenic disturbance owing to the high numerical dominance of habitat‐specific species and to the limited potential for functional redundancy within the system.  相似文献   

4.
Cheal  A. J.  MacNeil  M. Aaron  Cripps  E.  Emslie  M. J.  Jonker  M.  Schaffelke  B.  Sweatman  H. 《Coral reefs (Online)》2010,29(4):1005-1015
Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral–macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral–macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global climate change emphasize the need for more effective identification and protection of ecosystem components that are critical for the prevention of coral reef phase shifts.  相似文献   

5.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

6.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

7.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

8.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

9.
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.  相似文献   

10.
Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present‐day ecosystems is limited. Here we use data from three independent large‐scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1‐fold) and coral juvenile densities (1.3‐fold), while non‐calcifying macroalgae greatly increase (up to 3.2‐fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5–3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.  相似文献   

11.
The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.  相似文献   

12.
Herbivory is a key process structuring plant communities in both terrestrial and aquatic ecosystems, with variation in herbivory often being related to shifts between alternate states. On coral reefs, regional reductions in herbivores have underpinned shifts from coral to dominance by leathery macroalgae. These shifts appear difficult to reverse as these macroalgae are unpalatable to the majority of herbivores, and the macroalgae suppress the recruitment and growth of corals. The removal of macroalgae is, therefore, viewed as a key ecological process on coral reefs. On the Great Barrier Reef, Sargassum is a dominant macroalgal species following experimentally induced coral–macroalgal phase-shifts. We, therefore, used Sargassum assays and remote video cameras to directly quantify the species responsible for removing macroalgae across a range of coral reef habitats on Lizard Island, northern Great Barrier Reef. Despite supporting over 50 herbivorous fish species and six macroalgal browsing species, the video footage revealed that a single species, Naso unicornis, was almost solely responsible for the removal of Sargassum biomass across all habitats. Of the 42,246 bites taken from the Sargassum across all habitats, N. unicornis accounted for 89.8% (37,982) of the total bites, and 94.6% of the total mass standardized bites. This limited redundancy, both within and across local scales, underscores the need to assess the functional roles of individual species. Management and conservation strategies may need to look beyond the preservation of species diversity and focus on the maintenance of ecological processes and the protection of key species in critical functional groups.  相似文献   

13.
Coral and sandstone reefs cover a significant part ofSri Lanka‘s continental shelf and contain incomparison unique reef structures. Despite this, reefsin this region of the northern Indian Ocean havereceived little research attention. In an attempt tobetter understand these ecosystems and their innatecharacter, this study describes the variety of reeftypes and habitats that are found in this area. Thestudy concentrated on four major reef areas: the BarReef Marine Sanctuary (BRMS), Kandakuliya Reefs,Talawila Reef, and Mampuri Reef. These reefs showedapparent differences in habitat structure in terms ofthe proportion coral cover, coral species compositionand structural complexity. Two reef types were presentwithin the continental shelf of BRMS: coral andsandstone patch-reefs. Acropora was the mostdominant coral genera however in total 118madreporarian species and 50 coral genera wererecorded in the sanctuary. Distinct habitats wereidentified within reef types including shallow reefflat, shallow patch reef, deep reef flat and Porites dome habitats for the coral-reef patcheswhile the sandstone-reef patches were divided intostructured and flat sandstone reef habitats.Kandakuliya Reef south of BRMS was by large dominatedby coral rubble. Talawila Reef and Mampuri Reef showedunique structures with the former being dominated bymassive corals and the latter mainly containingsandstone structures. In addition to factors such asbio-erosion, sedimentation, hydrodynamics, andrecruitment or colonisation processes, some reefs wereclearly under significant direct human impact whichappeared to play a dominant role in habitatstructuring. However, type and degree of humandisturbance varied among the reefs. Habitat alterationat Kandakuliya Reef was the result of intense fishingusing destructive fishing methods. Talawila Reef andMampuri Reef was also influenced by fishing activitiesthough reef structure seemed less affected. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Marginal coral reef systems may provide valuable insights into the nature of ecosystem processes in systems on the trajectory towards a phase shift to an alternate ecosystem state. This study investigates the process of herbivory in a marginal coral reef system in the Keppel Islands at the southern end of the Great Barrier Reef. Branching Acropora coral and the brown macroalga Lobophora variegata occupied up to 95% of the reef crest substratum at the three surveyed reefs. Feeding rates of herbivorous fishes and removal rates of Lobophora were directly quantified within areas of branching Acropora and on planar surfaces. Feeding rates by herbivorous fishes were habitat dependent with the highest bite rates being found in planar habitats for both Lobophora and the epilithic algal matrix (EAM) by 1–2 orders of magnitude, respectively. Feeding rates on Lobophora were, however, much lower than rates on the EAM. The low rates of Lobophora removal and significantly lower rates of herbivory in branching habitats were consistent with the high biomass of this brown alga throughout the Keppel Islands and with its distribution on reef crests, where Lobophora biomass was 20 times greater in branching than in planar habitats. This lack of feeding by herbivorous fishes within branching coral habitats in the Keppel Islands contrasts with the typical role of coral and topographic complexity on herbivores on coral reefs and highlights the potential for complex interactions between algae, corals and fishes on coral reefs. On marginal systems, herbivory may modify algal distributions but may be unable to contain the proliferation of algae such as Lobophora.  相似文献   

15.
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.  相似文献   

16.
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems.  相似文献   

17.
Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range–body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.  相似文献   

18.
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.  相似文献   

19.
The origin and structure of Tutia Reef, a coral reef off the Tanganyika coast, is described. It is concluded that the reef is formed in part from the cutting back flat of the older reef 14 ft above the level of the present reef, and in part from seaward growth of the reef.
Based on lines of quadrats down three sides of the reef an assessment of the cover of living coral on the reef is made, and the distribution of the dominant corals of the reef described. It is suggested that, contrary to the views of Crossland (1902, 1903), many East African coral reefs are undergoing seaward growth.
The distribution of the fishes on the reef is described, and a correlation is shown with the distribution of living coral on the reef. Many species of fishes have restricted distribution on the reef.
The feeding relationships of the fishes are discussed, and the total fish biomass divided into separate feeding categories. Tutia Reef has a low biomass of herbivorous fishes compared with the results from Eniwetok Atoll obtained by Odum & Odum (1955). This is considered to be due to the fact that Tutia Reef exhibits characteristics of an outer reef, deriving much of its energy from plankton, not those of an enclosed and almost autotrophic logoon.  相似文献   

20.
Abstract Biodiversity is frequently associated with functional redundancy. Indo‐Pacific coral reefs incorporate some of the most diverse ecosystems on the globe with over 3000 species of fishes recorded from the region. Despite this diversity, we document changes in ecosystem function on coral reefs at regional biogeographical scales as a result of overfishing of just one species, the giant humphead parrotfish (Bolbometopon muricatum). Each parrotfish ingests over 5 tonnes of structural reef carbonates per year, almost half being living corals. On relatively unexploited oceanic reefs, total ingestion rates per m2 balance estimated rates of reef growth. However, human activity and ecosystem disruption are strongly correlated, regardless of local fish biodiversity. The results emphasize the need to consider the functional role of species when formulating management strategies and the potential weakness of the link between biodiversity and ecosystem resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号