首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

2.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment.  相似文献   

3.
Nitrogen (N) isotope systematics were investigated at two high-elevation ombrotrophic peat bogs polluted by farming and heavy industry. Our objective was to identify N sources and sinks for isotope mass balance considerations. For the first time, we present a time-series of δ15Ν values of atmospheric input at the same locations as δ15Ν values of living Sphagnum and peat. The mean δ15Ν values systematically increased in the order: input NH4 + (?10.0‰) < input NO3 ? (?7.9‰) < peat porewater (?5.6‰) < Sphagnum (?5.0‰) < shallow peat (?4.2‰) < deep peat (?2.2‰) < runoff (?1.4‰) < porewater N2O (1.4‰). Surprisingly, N of Sphagnum was isotopically heavier than N of the atmospheric input (P < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N. Ambient air contains such N in the form of N215ΝN2 = 0‰). Because high energy is required to break the triple bond, microbial N fixation is likely to proceed only under limited availability of pollutant N. Also for the first time, a δ15Ν comparison is presented between anoxic deeper peat and porewater N2O. Isotopically light N is removed from anoxic substrate by denitrification, whose final product, N2, escapes into the atmosphere. Porewater N2O is an isotopically heavy residuum following partial N2O reduction to N2.  相似文献   

4.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.

Key message

Eucalyptus and Acacia species were surprisingly similar with respect to variations in δ 13 C, δ 15 N. Both genera respond with speciation and associated changes in leaf structure to drought.

Abstract

Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from ?29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about ?25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g?1 in Eucalyptus, and were 18.7 ± 4.1 mg g?1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.  相似文献   

6.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   

7.
Land-based nutrient pollution represents a significant human threat to coral reefs globally. We examined this phenomenon in shallow seagrass and coral reef communities between the Content Keys (southern Florida Bay) and Looe Key (south of Big Pine Key) in the Lower Florida Keys by quantifying the role of physical forcing (rainfall, wind, tides) and water management on mainland South Florida to nutrient enrichment and blooms of phytoplankton, macroalgae, and seagrass epiphytes. Initial studies (Phase I) in 1996 involved daily water quality sampling (prior to, during, and following physical forcing events) at three stations (AJ, an inshore area directly impacted by sewage discharges; PR, a nearshore patch reef located inshore of Hawk Channel; and LK, an offshore bank reef at Looe Key) to assess the spatial and temporal patterns in advection of land-based nutrients to the offshore reefs. Concentrations of dissolved inorganic nitrogen (DIN=NH4++NO3+NO2), soluble reactive phosphorus (SRP), and chlorophyll a increased at PR and LK following a wind event (∼15 knots, northeast) in mid-February. The highest DIN (mostly NH4+) and SRP concentrations of the entire study occurred at the inshore AJ during an extreme low tide in March. Following the onset of the wet season in May, mean NH4+ and chlorophyll a concentrations increased significantly to maximum seasonal values at PR and LK during summer; relatively low concentrations of NO3 and a low f-ratio (NO3/NH4++NO3) at all stations during summer do not support the hypothesis that the seasonal phytoplankton blooms resulted from upwelling of NO3. A bloom of the seagrass epiphyte Cladosiphon occidentalis (phaeophyta) followed the onset of the rainy season and increased NH4+ concentrations at LK, resulting in very high epiphyte:blade ratios (∼3:1) on Thalassia testudinum. Biomass of macroalgae increased at all three stations from relatively low values (<50 g dry wt m−2) in winter and early spring to higher values (∼100-300 g dry wt m−2) typical of eutrophic seagrass meadows and coral reefs following the onset of the rainy season. The mean δ15N value of Laurencia intricata (rhodophyta) during 1996 at AJ (+4.7‰) was within the range reported for macroalgae growing on sewage nitrogen; lower values at the more offshore PR (+3.1‰) and LK (+2.9‰) were at the low end of the sewage range, indicating an offshore dilution of the sewage signal during the 1996 study. However, transient increases in δ15N of Cladophora catanata (chlorophtyta) from ~+2% to +5% at LK concurrent with elevated NH4+ concentrations following rain and/or wind events in May and July suggest episodic advection of sewage nitrogen to the offshore LK station. The Phase II study involved sampling of macroalgae for δ15N along a gradient from the Content Keys through Big Pine Key and offshore to LK in the summer wet season of 2000 and again in the drought of spring 2001. During the July 2000 sampling, macroalgae in nearshore waters around Big Pine Key had elevated δ15N values (~+4‰) characteristic of sewage enrichment; lower values (~+2‰) at LK were similar to values reported for macroalgae in upstream waters of western Florida Bay influenced by nitrogen-rich Everglades runoff. That pattern contrasted with the drought sampling in March 2001, when δ15N values of macroalgae were elevated (+6‰) to levels characteristic of sewage enrichment over a broad spatial scale from the Content Keys to LK. These results suggest that regional-scale agricultural runoff from the mainland Everglades watersheds as well as local sewage discharges from the Florida Keys are both significant nitrogen sources supporting eutrophication and algal blooms in seagrass and coral reef communities in the Lower Florida Keys. Hydrological and physical forcing mechanisms, including rainfall, water management on the South Florida mainland, wind, and tides, regulate the relative importance and variability of these anthropogenic nitrogen inputs over gradients extending to the offshore waters of the Florida Reef Tract.  相似文献   

8.
Isotope analyses of nitrate and algae were used to gain better understanding of sources of nitrate to Florida’s karst springs and processes affecting nitrate in the Floridan aquifer at multiple scales. In wet years, δ15N and δ18O of nitrate ranged from +3 to +9‰ in headwater springs in north Florida, indicating nitrification of soil ammonium as the dominant source. With below normal rainfall, the δ15N and δ18O of nitrate were higher in almost all springs (reaching +20.2 and +15.3‰, respectively) and were negatively correlated with dissolved oxygen. In springs with values of δ15N-NO3 and δ18O-NO3 greater than +10‰, nitrate concentrations declined 40–50% in dry years and variations in the δ15N and δ18O of nitrate were consistent with the effects of denitrification. Modeling of the aquifer as a closed system yielded in situ fractionation caused by denitrification of 9 and 18‰ for Δ18O and Δ15N, respectively. We observed no strong evidence for local sources of nitrate along spring runs; concentrations declined downstream (0.42–3.3?μmol-NO3 L?1 per km) and the isotopic dynamics of algae and nitrate indicated a closed system. Correlation between the δ15N composition of nitrate and algae was observed at regional and spring-run scales, but the relationship was complicated by varying isotopic fractionation factors associated with nitrate uptake (Δ ranged from 2 to 13‰). Our study demonstrates that nitrate inputs to Florida’s springs are derived predominantly from non-point sources and that denitrification is detectable in aquifer waters with relatively long residence time (i.e., matrix flow).  相似文献   

9.
Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ?4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.  相似文献   

10.
Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three particulate organic matter sources; riverine plankton (δ13C ?30 ‰ and δ15N 7.9 ‰) identified in the Thames estuary only, marine plankton (average δ13C ?21.4 ‰ and δ15N 4.5 ‰) and a third source with an enriched 13C signature (>?16.7 ‰) and elevated C:N ratio (>12.7). Particulate organic matter with enriched 13C values were observed throughout the Humber estuary and at the marine end-member of the Thames estuary. While bacterial cycling of organic carbon undoubtedly takes place within these estuaries, these processes on their own are unlikely to account for the isotopic signatures seen. The 13C enriched organic matter source is suggested to be due to particulate organic matter input from marsh plants and seagrasses such as Spartina spp. and Zostera on the adjacent salt marshes and mudflats and/or macroalgae along the banks of the estuaries. This 13C enriched signal was also identified approximately 50 km offshore within the southern North Sea, in the East Anglian plume, which transports UK riverine water off-shore in a discrete plume. This plume therefore provides a mechanism to transport this estuarine derived organic matter pool offshore out of the estuaries. These results indicate that estuarine derived organic matter from marsh plants, seagrasses and/or macroalgae contributes to the southern North Sea organic matter pool and is therefore likely to contribute to winter-time shelf sea carbon and nitrogen cycles.  相似文献   

11.
We present 42 dual-isotope nitrate analyses of fresh water samples collected in the St. Lawrence River between June 2006 and July 2008. Measured δ15N–NO3 ? and δ18O–NO3 ? values correlate negatively, while δ18O–NO3 ? displays no negative correlation with nitrate concentration. This suggests that nitrate uptake and/or elimination by denitrification is not the main driver of observed variations in nitrate concentration and isotopic signature in the St. Lawrence River. In addition, δ18O–NO3 ? is negatively correlated with the seasonally variable δ18O of ambient water, indicating that the variation in the isotopic signature of nitrate is barely modulated by in-stream nitrate regeneration (nitrification). It rather is constrained by along-river changes in the external sources of nitrate. Given the distinct nitrogen (N) and oxygen (O) isotopic signature of atmospheric nitrate, we argue that observed seasonal variations of δ15N–NO3 ? and δ18O–NO3 ? in the St. Lawrence River are due to variable contributions of snowmelt-derived water. Based on a N and O isotope mass balance, we show that total nitrate loading in the St. Lawrence River is dominated by a N input from the Great Lakes (47 ± 28 %) and from nitrate regeneration of both internal and external N (48 ± 22 %). While temporal nitrate N and O isotope dynamics in the St. Lawrence River are mainly influenced by the atmospheric N input fluctuations, with an increase in atmospheric loading during spring, atmospheric N plays overall a rather insignificant role with regards to the N budget (5 ± 4 %).  相似文献   

12.
Globally, the eutrophication of coastal marine environments is a worsening problem that is accelerating the loss of biodiversity and ecosystem services. Coral reefs are among the most sensitive to this change, as chronic inputs of agricultural and wastewater effluents and atmospheric deposition disrupt their naturally oligotrophic state. Often, anthropogenic alteration of the coastal nitrogen pool can proceed undetected as rapid mixing with ocean waters can mask chronic and ephemeral nitrogen inputs. Monitoring nitrogen stable isotope values (δ 15N) of benthic organisms provides a useful solution to this problem. Through a 7-yr monitoring effort in Quintana Roo, Mexico, we show that δ 15N values of the common sea fan Gorgonia ventalina were more variable near a developed (Akumal) site than at an undeveloped (Mahahual) site. Beginning in 2007, the global recession decreased tourist visitations to Akumal, which corresponded with a pronounced 1.6 ‰ decline in sea fan δ 15N through 2009, at which time δ 15N values were similar to those from Mahahual. With the recovery of tourism, δ 15N values increased to previous levels. Overall, 84 % of the observed variation in δ 15N was explained by tourist visitations in the preceding year alone, indicating that variable nitrogen source contributions are correlated with sea fan δ 15N values. We also found that annual precipitation accounted for some variation in δ 15N, likely due to its role in groundwater flushing into the sea. Together, these factors accounted for 96 % of the variation in δ 15N. Using a mixing model, we estimate that sewage can account for up to 42 % of nitrogen in sea fan biomass. These findings illustrate the high connectivity between land-based activities and coral reef productivity and the measurable impact of the tourism industry on the ecosystem it relies on.  相似文献   

13.
Wood nitrogen isotope composition (δ15N) provides a potential retrospective evaluation of ecosystem N status but refinement of this index is needed. We calibrated current wood δ15N of Douglas-fir (Pseudotsuga menziesii), an ectomycorrhizal tree species, against a productivity gradient of contrasting coastal forests of southern Vancouver Island (Canada). We then examined historical δ15N via increment cores, and tested whether wood δ15N corresponded with climatic fluctuations. Extractable soil N ranged from 11 to 43 kg N ha?1 along the productivity gradient, and was characterized by a progressive replacement of N forms (amino acids, NH4 + and NO3 ?). Current wood δ15N was significantly less depleted (?5.0 to ?2.6 ‰) with increasing productivity, although linear correlations were stronger with Δδ15N (the difference between wood and soil δ15N) to standardize the extent of isotopic fractionation by ectomycorrhizal fungi. An overall decline in wood δ15N of 0.9 ‰ over the years 1900–2009 was detected, but trends diverged widely among plots, including positive, negative and no trend with time. We did not detect significant correlations in detrended wood δ15N with mean annual temperature or precipitation. The contemporary patterns in stand productivity, soil N supply and wood δ15N were moderately strong, but interpreting historical patterns in δ15N was challenging because of potential variations in N uptake related to stand dynamics. The lack of wood δ15N correlations with climate may be partly due to methodological limitations, but might also reflect the relative stability in N supply due to the overriding constraints of soil organic matter quantity and quality.  相似文献   

14.
Nitrate dual stable isotopes (δ15N and δ18O of NO3 ?) have proven to be a powerful technique to elucidate nitrogen (N) cycling pathways in aquatic systems. We applied this technique for the first time in the pelagic zone of a small temperate meso-eutrophic lake to identify the dominant N cycling pathways, and their spatial and temporal variability. We measured the lake NO3 ? δ15N and δ18O signatures over an annual cycle and compared them to that of the watershed. Both δ15N and δ18O of NO3 ? in the lake increased during summer relative to the inputs. Relationships between lake NO3 ? isotopic composition and concentrations were different across thermal strata with an apparent isotope effect in the epilimnion of 15εepi = 4.6‰ and 18εepi = 10.9‰. We found a strong deviation of the lake NO3 ? δ18O and δ15N from the expected 1:1 line for assimilation (slope = 1.73) suggesting that nitrification was co-occurring. We estimated that nitrification could support between 5 and 30% of nitrate-based production during the growing season, but was negligible in early spring and fall, and probably more dominant under ice. We showed that the technique is promising to study N processes at the ecosystem scale in shallow lakes, particularly during winter. Our results suggest that recycled NO3 ? could support primary productivity and influence phytoplankton composition in the surface waters of small lakes.  相似文献   

15.
We determined the magnitude of isotopic fractionation of carbon and nitrogen stable isotope ratios (as enrichment factors, Δδ13C and Δδ15N, respectively) between the tissues and diets of captive Japanese macaques (Macaca fuscata) using a controlled feeding experiment, to provide basic data for reconstructing their feeding habits. The Δδ13C and Δδ15N values, respectively, were 0.9 ± 0.2 ‰ (mean ± standard deviation, SD) and 3.0 ± 0.3 ‰ for whole blood, 1.3 ± 0.2 ‰ and 4.3 ± 0.3 ‰ for plasma, and 0.8 ± 0.2 ‰ and 3.0 ± 0.2 ‰ for red blood cells. However, the Δδ13C and Δδ15N values for hair were 2.8 ± 0.3 ‰ and 3.4 ± 0.2 ‰, respectively. No difference was detected in the δ13C and δ15N values of hair sampled from different parts of the body. We investigated the effects of diet on δ13C in growing hair by alternating the diet of the macaques each month between two diets that differed markedly in δ13C. Hair regrown after shaving repeatedly recorded the δ13C of the diet consumed during the time of hair growth. On the other hand, hair naturally grown during the diet-change experiment did not show a clear pattern. One possible reason is that the hair had grown abnormally under unnatural indoor conditions and showed complicated isotope signatures. To reconstruct the long-term feeding history of Japanese macaques, we need to further clarify the relationships between the stable isotope signature of diet and various body tissues.  相似文献   

16.
Molecular nitrogen (N2) constitutes the majority of Earth's modern atmosphere, contributing ~0.79 bar of partial pressure (pN2). However, fluctuations in pN2 may have occurred on 107–109 year timescales in Earth's past, perhaps altering the isotopic composition of atmospheric nitrogen. Here, we explore an archive that may record the isotopic composition of atmospheric N2 in deep time: the foliage of cycads. Cycads are ancient gymnosperms that host symbiotic N2‐fixing cyanobacteria in modified root structures known as coralloid roots. All extant species of cycads are known to host symbionts, suggesting that this N2‐fixing capacity is perhaps ancestral, reaching back to the early history of cycads in the late Paleozoic. Therefore, if the process of microbial N2 fixation records the δ15N value of atmospheric N2 in cycad foliage, the fossil record of cycads may provide an archive of atmospheric δ15N values. To explore this potential proxy, we conducted a survey of wild cycads growing in a range of modern environments to determine whether cycad foliage reliably records the isotopic composition of atmospheric N2. We find that neither biological nor environmental factors significantly influence the δ15N values of cycad foliage, suggesting that they provide a reasonably robust record of the δ15N of atmospheric N2. Application of this proxy to the record of carbonaceous cycad fossils may not only help to constrain changes in atmospheric nitrogen isotope ratios since the late Paleozoic, but also could shed light on the antiquity of the N2‐fixing symbiosis between cycads and cyanobacteria.  相似文献   

17.
Biological dinitrogen (N2) fixation (diazotrophy, BNF) relieves marine primary producers of nitrogen (N) limitation in a large part of the world oceans. N concentrations are particularly low in tropical regions where coral reefs are located, and N is therefore a key limiting nutrient for these productive ecosystems. In this context, the importance of diazotrophy for reef productivity is still not resolved, with studies up to now lacking organismal and seasonal resolution. Here, we present a budget of gross primary production (GPP) and BNF for a highly seasonal Red Sea fringing reef, based on ecophysiological and benthic cover measurements combined with geospatial analyses. Benthic GPP varied from 215 to 262 mmol C m?2 reef d?1, with hard corals making the largest contribution (41–76%). Diazotrophy was omnipresent in space and time, and benthic BNF varied from 0.16 to 0.92 mmol N m?2 reef d?1. Planktonic GPP and BNF rates were respectively approximately 60- and 20-fold lower than those of the benthos, emphasizing the importance of the benthic compartment in reef biogeochemical cycling. BNF showed higher sensitivity to seasonality than GPP, implying greater climatic control on reef BNF. Up to about 20% of net reef primary production could be supported by BNF during summer, suggesting a strong biogeochemical coupling between diazotrophy and the reef carbon cycle.  相似文献   

18.
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 ) and phosphate (PO4 3−) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l−1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 and PO4 3− stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.  相似文献   

19.
The utility of δ15N measurements in Padina australis Hauck as a probe for its external nitrogen (N) sources was tested by monitoring the bulk values of chemical components [δ15N, δ13C, and N and carbon (C) contents] and their internal distributions during a 12 d incubation in a controlled environment. Under the saturated conditions of isotopically heavier nitrate than that of original algal tissue, the bulk δ15N in P. australis was enriched, but less than what was predicted from a simple mixing model, signaling possible isotopic discrimination during N assimilation and subsequent N efflux from the cells. The enhanced N content (%), which occurred simultaneously with this δ15N shift, was a useful signal indicating this phenomenon. Bulk δ15N was enriched, especially around the meristem, in tissues growing under conditions of higher irradiance and temperature, probably due in part to dissolved organic nitrogen (DON) excretion. The δ13C enhancement in bulk algal tissues, also associated with high photosynthetic activity, may be an additional signal indicating this unbalanced internal δ15N distribution. However, in summer and winter environmental conditions with periodic nitrate supplies simulating typical fringing reef waters, the difference in measured algal bulk δ15N from theoretical predictions was within ±1.0‰. This difference is very small compared with the variation in δ15N in possible N sources in coastal areas. In the field, therefore, δ15N in Padina can be used effectively to trace N sources in both space and time after determining algal N content and δ13C to determine whether large alterations occur in algal δ15N.  相似文献   

20.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号