首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The rate of Cl influx in intactChara was inhibited whenever the ATP concentration was reduced by application of metabolic inhibitors. In perfused cells, however, a net influx of Cl against its electrochemical gradient could be observed in the absence of ATP. Addition of ATP to the perfusion medium slightly stimulated Cl influx in one experiment but had no effect in another. Addition of ADP, NADH or metabolic inhibitors did not alter the influx rate. Consideration of the potential energy gradients across theChara plasmalemma in the perfused state leads to the conclusion that Cl influx occurs by cotransport with H+ or OH.  相似文献   

2.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

3.
Summary The light-mediated, time-dependent rise in the pH value at the center of an alkaline band was analyzed using the methods of numerical analysis. From this analysis an expression of the time-dependent build-up of OH efflux was obtained for these bands. This information can now be employed to determine whether the light-activated transport of OH and HCO 3 influences the electrical properties of the plasmalemma. The dark-induced deactivation of OH transport was also characterized, revealing a transition from efflux to a transient influx phase during deactivation.Numerical analysis of the steady-state OH diffusion pattern, established along the surface of an alkaline band, revealed that the OH efflux width was wider than previously envisaged. It was also found that OH sink regions exist on either side of the efflux zone. These, and other characteristics revealed by the numerical analysis, enabled us to extend the OH transport model proposed by Lucas (J. Exp. Bot. 1975,26:347).  相似文献   

4.
Summary The activity of the main base-extruding mechanism in Vero cells, the Na+-independent Cl/HCO 3 antiport, increases 5- to 10-fold when the cytosolic pH (pH i ) is increased over a narrow range close to neutrality. We have studied the effect on this regulation of stimulation and inhibition of protein kinase C by short-term and long-term treatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). After short-term treatment with TPA to stimulate the kinase, the threshold value for activation of the antiport is shifted to a more acidic pH. After prolonged treatment with TPA to downregulate protein kinase C the sensitivity of the antiport to variation in proton concentration was lowered, possibly by reducing the number of essential protonbinding sites. Concomitantly, the steady state pH i of the cells was increased. The data indicate that protein kinase C is involved in the regulation of the Na+-independent Cl/HCO 3 antiport.  相似文献   

5.
Summary An inward current which increases in magnitude over a period of seconds is activated when the membrane ofChara inflata (a green alga) in a K+-conductive state is hyperpolarized by a voltage clamp. The peak current and the half-time of activation are exponentially dependent on membrane potential difference. It was found by using an external Cl electrode that the component exponentially dependent on potential was due to an efflux of Cl. The measured current-voltage curves and the kinetics of deactivation of the current showed that other time-dependent components contributed to the net inward current. The punchthrough theory of Coster (Biophys. J. 5:669–686, 1965) does not adequately explain the inward current since a punchthrough potential could not be obtained, and the inward current was distinctly time dependent. The voltage and time dependence of the inward current strongly suggests that the Cl efflux activated by hyperpolarization is through voltage-gated channels which open more frequently as the membrane is hyperpolarized.  相似文献   

6.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

7.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

8.
Summary Ouabain-insensitive, furosemide-sensitive Rb+ influx (J Rb) into HeLa cells was examined as functions of the extracellular Rb+, Na+ and Cl concentrations. Rate equations and kinetic parameters, including the apparent maximumJ Rb, the apparent values ofK m for the three ions and the apparentK i for K+, were derived. Results suggested that one unit molecule of this transport system has one Na+, one K+ and two Cl sites with different affinities, one of the Cl sites related with binding of Na+, and the other with binding of K+(Rb+). A 11 stoichiometry was demonstrated between ouabain-insensitive, furosemidesensitive influxes of22Na+ and Rb+, and a 12 stoichiometry between those of Rb+ and36Cl. The influx of either one of these ions was inhibited in the absence of any one of the other two ions. Monovalent anions such as nitrate, acetate, thiocyanate and lactate as substitutes for Cl inhibited ouabain-insensitive Rb+ influx, whereas sulfamate and probably also gluconate did not inhibitJ Rb. From the present results, a general model and a specialized cotransport model were proposed: 1) In HeLa cells, one Na+ and one Cl bind concurrently to their sites and then one K+ (Rb+) and another Cl bind concurrently. 2) After completion of ion bindings Na+, K+(Rb) and Cl in a ratio of 112 show synchronous transmembrane movements.  相似文献   

9.
Summary The current-voltage relationship of carrier-mediated, passive and active ion transport systems with one charge-carrying pathway can exactly be described by a simple reaction kinetic model. This model consists of two carrier states (one inside, one outside) and two pairs (forwards and backwards) of rate constants: a voltage-dependent one, describing the transport of charge and a voltage-insensitive one, summarizing all the other (voltage-independent) reactions. For the electrogenic Cl pump inAcetabularia these four rate constants have been determined from electrical measurements of the current-voltage relationship of the pump (Gradmann, Hansen & Slayman, 1981;in: Electrogenic Ion Pumps, Academic Press, New York). The unidirectional Cl efflux through the pump can also be calculated by the availiable reaction kinetic parameters.36Cl efflux experiments on singleAcetabularia cells with simultaneous electrical stimulation (action potentials) and recording, demonstrate the unidirectional Cl efflux to depend on the membrane potential. After subtraction of an efflux portion which bypasses the pump, agreement is found between the measured flux-voltage relationship and the theoretical one as obtained from the reaction kinetic model and its parameters from the electrical data.  相似文献   

10.
The role of H+-ATPase in proximal tubule cell pH regulation was studied by microperfusion techniques and by confocal microscopy. In a first series of experiments, proximal S3 segments of rabbit kidney were perfused ``in vitro' while their cell pH was measured by fluorescence microscopy after loading with BCECF. In Na+- and Cl-free medium, cell pH fell by a mean of 0.37 ± 0.051 pH units, but after a few minutes started to rise again slowly. This rise was of 0.17 ± 0.022 pH units per min, and was significantly reduced by bafilomycin and by the Cl channel blocker NPPB, but not by DIDS. In a second series of experiments, subcellular vesicles of proximal tubule cells of S3 segments of mouse kidney were studied by confocal microscopy after visualization by acridine orange or by Lucifer yellow. After superfusion with low Na+ solution, which is expected to cause cell acidification, vesicles originally disposed in the basolateral and perinuclear cell areas, moved toward the apical area, as detected by changes in fluorescence density measured by the NIH Image program. The variation of apical to basolateral fluorescence ratios during superfusion with NaCl Ringer with time was 0.0018 ± 0.0021 min−1, not significantly different from zero (P > 0.42). For superfusion with Na+0 Ringer, this variation was 0.081 ± 0.015 min−1, P < 0.001 against 0. These slopes were markedly reduced by the Cl channel blocker NPPB, and by vanadate at a concentration that has been shown to disrupt cytoskeleton function. These data show that the delayed alkalinization of proximal tubule cells in Na+-free medium is probably due to a vacuolar H+-ATPase, whose activity is stimulated in the presence of Cl, and dependent on apical insertion of subcellular vesicles. The movement of these vesicles is also dependent on Cl and on the integrity of the cytoskeleton. Received: 11 April 2000/Revised: 14 August 2000  相似文献   

11.
Summary Changes in extracellular pH (pHo) in red cell suspensions were monitored in a stopped-flow rapid reaction apparatus under conditions wheredpHo/dt was determined by the rate of HCO 3 /Cl exchange across the membrane. Experiments were performed at 5°C<T<40°C using either untreated cells or cells exposed to 0.11mm SITS (4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid). Although SITS exposure reduced the rate of exchange by 90%, both untreated and SITS-treated cells are similarly affected by changes in pH0 and temperature. The rate of HCO 3 /Cl exchange exhibits a minimum at about pHo 5 and a maximum at about pH0 7.4 at all temperatures. A transition temperature of 17°C was observed in the Arrhenius relationship for all pH0. The activation energies (E a) in kcal/mol are 19.6 below and 11.7 above 17°C for 50<8. These findings, similar to those reported for Cl self-exchange, suggest that: (i) a change in the rate-limiting step for HCO 3 /Cl exchange occurs at 17°C, possibly due to an altered interaction between the transport pathway and membrane lipids; (ii) the carrier system can be titrated by either H+ or SITS from the outside of the membrane, but the untitrated sites continue to transport normally; (iii) the pH0 dependence of the rate of exchange is consistent with the titratable carrier having its most alkaline pK in the range expected for amino groups; and (iv) below pH0 5, the nature of the exchange is markedly altered.  相似文献   

12.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

13.
The present study explored regulation of electrogenic ion transport across cultured mouse endometrial epithelium by extracellular ATP using the short-circuit current (I SC ) and the patch-clamp techniques. The cultured endometrial monolayers responded to apical application of ATP with an increase in I SC in a concentration-dependent manner (EC50 at 3 μm). Replacement of Cl in the bathing solution or treatment of the cells with Cl channel blockers, DIDS and DPC, markedly reduced the I SC , indicating that a substantial portion of the ATP-activated I SC was Cl-dependent. Amiloride at a concentration (10 μm) known to block Na+ channels was found to have no effect on the ATP-activated I SC excluding the involvement of Na+ absorption. Adenosine was found to have little effect on the I SC excluding the involvement of P1 receptors. The effect of UTP, a potent P2U receptor agonist on the I SC was similar to that of ATP while potent P2X agonist, α-β-Methylene adenosine 5′-triphosphate (α-β-M-ATP) and P2Y agonist, 2-methylthio-adenosine triphosphate (2-M-ATP), were found to be ineffective. The effect of ATP on I SC was mimicked by the Ca2+ ionophore, ionomycin, indicating a role of intracellular Ca2+ in mediating the ATP response. Confocal microscopic study also demonstrated a rise in intracellular Ca2+ upon stimulation by extracellular ATP. In voltage-clamped endometrial epithelial cells, ATP elicited a whole-cell Cl current which exhibited outward rectification and delayed activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. The results of the present study demonstrate the presence of a regulatory mechanism involving extracellular ATP and P2U purinoceptors for endometrial Cl secretion.  相似文献   

14.
The effect of methyl mercuric chloride (MeHg) on short-circuit current (ISC) was studied in the isolated perfused epipodite preparation from the branchial chamber of European lobster (Homarus gammarus) acclimated to dilute seawater. When applied at the apical surface, 0.2, 1.0 and 3.0 μM MeHg depressed ISC by a 26%, 81% and 98%, respectively. The half-maximal inhibitory concentration (IC50) of apically applied MeHg was 0.6 μM. Basolaterally added MeHg (3.0 μM) had no effect on ISC, whereas addition of the specific Na+,K+-ATPase inhibitor ouabain (1.5 mM) reduced ISC by ~ 90%. Ouabain effects were reversible, and ISC fully recovered upon removal of ouabain. The MeHg-induced block of ISC was partially reversed by the reducing agent, 1,4-dithiothreitol, suggesting that the formation of S–Hg–S bridges is important in the inhibitory mechanism. A significant reduction of ISC and conductance occurred when low Na+ and Cl? salines were substituted. Furthermore, in the low Na+ saline, JClA  B fluxes were reduced by about 50%. In the highly conductive epipodite epithelium, coupling of Na+ and Cl? fluxes was suggested. The effects of MeHg on ISC in the lobster epipodite are attributed to inhibition of an apical Cl? influx.  相似文献   

15.
Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl conductance and we show that the sizes of both conductances vary with the Cl concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl concentration increases, the inward Cl current remains at a constant low level until the Cl concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl and NO 3 - but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl conductance allows passage of Cl and Br- equally well, I-less well, and NO 3 - , glutamate and gluconate poorly, if at all. The findings with NO 3 - are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl conductances by the cytosolic Cl concentration. Since the cytosolic Cl concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.This project was supported by the National Health and Medical Research Council of Australia. We thank Professor P. Barry (University of New South Wales) for assistance with the junction potential measurements.  相似文献   

16.
17.
The ionic currents spontaneously present in T84 intestinal epithelial cells, a line of colonie carcinoma origin, have been studied using the whole-cell recording mode of the patch-clamp technique and the single-electrode voltage-clamp method. Patch-clamp experiments showed that nonstimulated T84 cells already possess large currents but that these tend to disappear during the course of the experiments, presumably through the dialysis of some essential cytoplasmic component against the micropipette solution. The main charge carrier in these experiments appears to be Cl as judged from ion replacement. Microelectrode impalement of T84 cells gave a membrane potential of around –30 mV, similar to the equilibrium potential for Cl estimated from previously published values for intracellular Cl concentration. Voltage-clamp experiments with a single microelectrode revealed three kinetically distinguishable current patterns; currents decaying during hyperpolarizing voltage pulses, currents slowly activating during hyperpolarizing pulses and time-independent currents. The appearance of these distinct kinetic patterns was not predictable from cell to cell, and was not dependent on extracellular Ca2+. Ionic replacement experiments suggest that the charge carrier was always Cl, regardless of the kinetic pattern observed. No K+ currents appear to be present in the nonstimulated T84 cells. Exposure of T84 cells to the muscarinic agonist carbachol induced a shift in the membrane potential towards more negative values, consistent with an activation of a K+ conductance. Thus, we suggest that the resting membrane potential in T84 cells is determined by the distribution of Cl. This might imply that activation of K+ conductance could by itself support secretion by T84 monolayers through tonically active Cl channels.G.M.V. and M.A.V. were supported by AFRC (UK) LRG 111 and DGICYT (Spain), respectively. We are grateful to John O'Brien for culturing the cells, to John Dempster (University of Strathclyde, Glasgow, UK) for providing the analysis software, and to Geoff Warhurst (Hope Hospital, Salford, UK) for generously providing the initial batch of T84 cells.  相似文献   

18.
19.
Summary Ehrlich ascites tumor cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but subsequently recover their volume within 5 to 10 min with an associated KCl loss. 1. The regulatory volume decrease was unaffected when nitrate was substituted for Cl, and was insensitive to bumetanide and DIDS. 2. Quinine, an inhibitor of the Ca2+-activated K+ pathway, blocked the volume recovery. 3. The hypotonic response was augmented by addition of the Ca2+ ionophore A23187 in the presence of external Ca2+, and also by a sudden increase in external Ca2+. The volume response was accelerated at alkaline pH. 4. The anti-calmodulin drugs trifluoperazine, pimozide, flupentixol, and chlorpromazine blocked the volume response. 5. Depletion of intracellular Ca2+ stores inhibited the regulatory volume decrease. 6. Consistent with the low conductive Cl permeability of the cell membrane there was no change in cell volume or Cl content when the K+ permeability was increased with valinomycin in isotonic medium. In contrast, addition of the Ca2+ ionophore A23187 in isotonic medium promoted Cl loss and cell shrinkage. During regulatory volume decrease valinomycin accelerated the net loss of KCl, indicating that the conductive Cl permeability was increased in parallel with and even more than the K+ permeability. It is proposed that separate conductive K+ and Cl channels are activated during regulatory volume decrease by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号