首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of chloroplast coupling factor CF1 was studied by limited proteolysis followed by sodium dodecylsulfate polyacrylamide gel electrophoresis and N-terminal sequence analysis. The N-terminal fragment of the alpha-subunit was shown to have an exposed area including the peptide bonds E17--G18, R21--E22, E22--V23, and K24--V25. The cleavage of peptide bonds at amino acid residues E22 or/and V25 caused weaker subunit interactions and partial dissociation of the alpha- and gamma-subunits. In the N-terminal fragment of the isolated CF1 beta-subunit, the L14--E15 bond was found to be exposed to proteolytic attack. Also, the alphaS86--S87, alphaE125--S126, alphaR127--L128, and betaV76--A77 bonds were subject to proteolysis. The correlation between the accessibility of these bonds to proteases and the surface location of similar bonds in mitochondrial F1 was deduced from its molecular structure and a computed model of CF1. The K204--C205 bond exposed to protease on reduction of the CF1 gamma-subunit was shown to be masked when the catalytic reaction was initiated by CaATP.  相似文献   

2.
3.
Spinach chloroplast coupling factor (CF1) was crystal-lized at 20°C from 0.05 M TRIS-PO4, containing 4 mM ATP, 15mM KCl, 1.0 mM EDTA and 1.80 M (NH4)2SO4, at pH 7.8. Some unit cell parameters were determined by electron microscopy and by X-ray diffraction. The cube shaped crystals have a tetragonal lattice, a = b = 135 Å, c = 280 Å with eight molecules per unit cell; possible space group P422 or P42212, hence half a molecule in the asymmetric unit. Crystals grown at pH 7.5 in the absence of ATP have an orthorhombic lattice, a = 125 Å, b = 145 Å, c = 169 Å (C2221), eight molecules per unit cell.  相似文献   

4.
Conditions are reported under which ATP protects membrane-bound coupling factor 1 against sodium bromide inactivation. The presence of Mg2+ was found to be obligatory for this protection. ADP and GTP also protected the enzyme against salt inactivation but to a much smaller extent. Other nucleotides tested were ineffective. At low ATP concentrations ADP prevented the effect of ATP and modified the saturation curve for ATP from hyperbolic to sigmoidal. Treatment of chloroplasts with 0.4 M MgCl2 or 2 M LiCl resulted in inactivation of photophosphorylation. In contrast to NaBr-depleted particles the MgCl2 or LiCl-depleted chloroplasts can be reconstituted by purified coupling factor 1. A binding site for Mg2+ and two different sites for ATP upon the coupling factor 1 are suggested to explain the mechanism of their protection against salt inactivation.  相似文献   

5.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

6.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   

7.
8.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000. In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10(-7) or 2 . 10(-7), respectively. The fluorescence emission (lambdamax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with k1 = 2.4 . 10(4) M-1 . s-1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with K-1 = 3 . 10(-3) S-1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed. The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another. The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 10(6) M-1 . s-1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

9.
The binding of the chloroplast coupling factor CF to lipid vesicles was analyzed by gel filtration. CF can be bound to vesicles made of chloroplast lipids but not of lecithin. The presence in the vesicle walls of a proteolipid subunit of the hydrophobic component of the coupling factor increases the binding of CF. The apparent binding constant and the maximum protein/lipid ratio are calculated. The Ca2+-ATPase activity of bound CF is markedly lower than that of dissolved CF. It is confirmed that the proteolipid is a N,N'-dicyclohexylcarbodiimide sensitive proton channel. The binding of CF on proteolipid vesicles decreases their proton permeability.  相似文献   

10.
The ATP synthase of chloroplasts consists of the proton channel, CF0, and the catalytic part, CF1, which carries nucleotide-binding sites on subunits alpha and beta. The still poorly understood interaction between CF0 and the catalytic sites on CF1 is mediated by the smaller subunits gamma, delta and epsilon of CF1. We investigated the ability of purified delta to block proton leakage through CF0 channels after their exposure by removal of the CF1 counterpart. Thylakoids were partially depleted of CF1 by EDTA treatment. This increased their proton permeability and thereby reduced the rate of photophosphorylation. Subunit delta was isolated and purified by FPLC [Engelbrecht, S. and Junge, W. (1987) FEBS Lett. 219, 321-325]. Addition of delta to EDTA-treated thylakoids reconstituted high rates of phenazine-methosulfate-mediated photophosphorylation. Since delta does not interact with nucleotides by itself, the reconstitution was due to a reduction of the proton leakage through open CF0 channels. The molar ratio of purified delta over exposed CF0, which started to elicit this effect, was 3:1. However, if delta was added together with purified CF1 lacking delta, in a 1:1 molar ratio, the relative amount over exposed CF0 was as low as 0.06. This corroborated our previous conclusion [Lill, H., Engelbrecht, S., Sch?nknecht, G. and Junge, W. (1986) Eur. J. Biochem. 160, 627-634] that only a very small fraction of exposed CF0 was actually proton-conducting but with a very high unit conductance. CF1 including delta was apparently rebound preferentially to open CF0 channels. Although the ability of delta to control proton conduction through CF0 was evident, it remains to be established whether delta acts as a gated proton valve or as a conformational transducer in the integral CF0CF1 ATPase.  相似文献   

11.
The effects of tentoxin on the ATPase activities of coupling factor 1 proteins (CF1) and photophosphorylation with isolated chloroplasts and chloroplasts reconstituted with coupling factor proteins have been examined. 1. The calcium-dependent ATPase activities of coupling factors isolated from spinach, lettuce and Nicotiana otophora are completely inhibited by tentoxin. The ATPase activities of coupling factors isolated from Nicotiana tabacum and Nicotiana knightiana are not affected by tentoxin. 2. Phenazine methosulfate-catalyzed cyclic photophosphorylation with chloroplasts isolated from spinach, lettuce and N. otophora is completely inhibited by tentoxin, whereas chloroplasts isolated from N. knightiana and N. tabacum are relatively insensitive to tentoxin. 3. Spinach chloroplasts, partially depleted in CF1, can be reconstituted with coupling factors isolated from a wide variety of plants including lettuce, radish, N. tabacum, N. knightiana and N. otophora. 4. Spinach chloroplasts reconstituted with spinach, lettuce and N. otophora CF1 retain their sensitivity to tentoxin; however, when reconstituted with N. knightiana and N. tabacum coupling factor proteins, a significant fraction of the reconstituted rate remains tentoxin insensitive. These data are interpreted as evidence that coupling factors that reconstitute with spinach thylakoid membranes have both a catalytic and structural function.  相似文献   

12.
13.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

14.
D Leckband  G G Hammes 《Biochemistry》1988,27(10):3629-3633
The kinetic behavior of tightly bound nucleotides on chloroplast coupling factor from spinach was determined under phosphorylating and nonphosphorylating conditions. Chloroplast coupling factor 1 (CF1) was labeled with tightly bound radioactive ADP and/or ATP at two specific sites and reconstituted with thylakoid membranes depleted of CF1 by treatment with NaBr. The initial incorporation and dissociation of ADP from one of the sites requires light but occurs at the same rate under phosphorylating and non-phosphorylating conditions. The initial rate is considerably slower than the rate of ATP synthesis, but nucleotide exchange is very rapid during steady-state ATP synthesis. A direct correspondence between this nucleotide binding site and a site on soluble CF1 that hydrolyzes ATP was demonstrated. A second site binds MgATP very tightly; the MgATP does not dissociate during ATP synthesis nor does its presence alter the rate of ATP synthesis. This is analogous to the behavior found for soluble CF1 during ATP hydrolysis. These results demonstrate that the tight-binding nucleotide sites on soluble CF1 and membrane-bound coupling factor are essentially identical in terms of binding properties and kinetic behavior during ATP hydrolysis and synthesis.  相似文献   

15.
16.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

17.
Periodate-oxidized ADP, if left in aqueous solution, loses its phosphates by beta-elimination. This dephosphorylated dialdehyde compound caused rapid and irreversible inhibition of membrane-bound spinach chloroplast coupling factor 1 (CF1). Inhibition was 2.5 times faster in the light than in the dark. A high concentration of uncoupler eliminated the light stimulation. Light could be replaced by an acid-base transition. Therefore, the dialdehyde reacts with a site or sites on CF1 that become exposed by a high-energy state-induced conformational change. The substrate nucleotides ADP, ATP, GDP, and GTP protected against inhibition while Pi and the non-substrate nucleotides AMP, GMP, CTP, and UTP did not. The protection by GTP was competitive and magnesium-dependent, suggesting that the dialdehyde binds to a nucleotide-binding site. However, the corresponding UDP and CDP dialdehyde derivatives also inhibited CF1 and showed the light-stimulation effect, indicating that the adenine is not important for the binding. These derivatives could be binding to a nucleotide-binding site or to another reactive site that becomes exposed during the light-induced conformational change. In the latter case the protection by substrate nucleotides would be due to prevention of the energy-dependent conformational change.  相似文献   

18.
19.
The binding of various nucleotides to chloroplast coupling factor CF1 was studied by two dialysis techniques. It was found that the number of nucleoside diphosphate sites and their specificities for the base moiety is dependent on the magnesium concentration. In the presence of 50 micrometer added MgCl2, the protein has a single strong site/mol protein with Kd = 0.5 micrometer for ADP and high specificity (Kd greater than 20 micrometer for epsilonADP, GDP, CDP). In the presence of 5 mM MgCl2, the protein has two independent tight ADP sites (Kd = 0.4 micrometer) of low specificity (Kd approximately 0.8, 2, and 2 micrometer, respectively for episilonADP, GDP, and CDP). These results are compared with the specificity of the partial reactions for photophosphorylation.  相似文献   

20.
The photoaffinity analog 2-azido-ADP (2-azidoadenosine 5'-diphosphate) was used as a probe of the spinach chloroplast ATP synthase. The analog acted as a substrate for photophosphorylation. Several observations suggested that 2-azido-ADP and ADP bound to the same class of tight nucleotide binding sites: (a) 2-azido-ADP competitively inhibited ADP tight binding (Ki = 1.4 microM); (b) the concentration giving 50% maximum binding, K0.5 for analog tight binding (1 microM) was similar to that observed for ADP (2 microM); (c) nucleotide tight binding required prior membrane energization and was completely reversed by re-energization; (d) the tight binding of 2-azido-[beta-32P]ADP was completely prevented by ADP; (e) the analog inhibited the light-triggered ATPase activity at micromolar concentrations. Ultraviolet irradiation of washed thylakoid membranes containing tightly bound 2-azido-[beta-32P]ADP resulted in the covalent incorporation of the label into the membranes. Denaturing polyacrylamide gel electrophoresis of the labeled membranes demonstrated that the beta subunit of the coupling factor one complex was the only polypeptide in the thylakoid membranes which was labeled. These results identify the beta subunit of the coupling factor as the location of the tightly bound ADP on the thylakoid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号