首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jean J. Pan  Keith Clay 《Oikos》2002,99(1):37-46
Many plant species have the ability to expand laterally through space by clonal growth. Plant pathogens can affect clonal growth characteristics thereby altering the success of host plants within populations and of clonal species within communities. We conducted a greenhouse experiment to determine the effects of the systemic fungal pathogen, Epichloë glyceriae , on clonal growth patterns of its host grass, Glyceria striata . We found that infected and uninfected plants produced similar total biomass and numbers of tillers plus primary stolons per mother ramet. However, biomass allocation to tillering (vegetative growth) vs stolon production (clonal growth) was significantly affected by pathogen infection. Infected plants produced more stolons and clonal growth biomass than uninfected plants while mother ramets of uninfected plants produced more tillers and biomass than infected plants. Stolon architecture of infected and uninfected plants also differed. In two of three populations, infected plants produced stolons with greater biomass and shorter spacer lengths, even though mean stolon lengths were similar for infected and uninfected plants. These results contrast strongly with most other clonal plant-pathogen systems where infected plants are less vigorous and have reduced clonal growth compared to uninfected plants. Greater clonal growth may be an effective mechanism for host genotypes to persist and spread when seed production is prevented, as is the case with castrating pathogens like Epichloë glyceriae .  相似文献   

2.
Summary The impact of the systemic fungus Balansia henningsiana (Clavicipitaceae) on the grass Panicum agrostoides was examined in field and greenhouse studies comparing infected and uninfected plants. Approximately one-half of all plants in three populations located in southern Indiana were infected. In field samples and greenhouse studies infected plants were significantly heavier than uninfected plants and produced significantly more tillers. Infection tended to suppress flowering but occasional asymptomatic tillers on infected plants produced healthy inflorescences. Although infected plants produced fewer inflorescences than uninfected plants as a proportion of total tillers, absolute numbers of inflorescences were similar in the two groups. Because other grasses infected by different species of Balansia and related fungi often are more resistant to insect damage, pest damage was quantified in one population. No differences between infected and uninfected plants were detected in levels of herbivory but infected plants had significantly less damage by the common leaf spot fungus Alternaria triticina. The results suggest that there is no selective disadvantage for plants infected by B. henningsiana.  相似文献   

3.
Obrist  Daniel  Yakir  Dan  Arnone III  John A. 《Plant and Soil》2004,267(1-2):1-12
Infection of tall fescue (Festuca arundinacea Schreb.) with its endemicNeotyphodium coenophialum-endophyte (Morgan-Jones and Gams) Glenn, Bacon and Hanlin appears to reduce copper (Cu) concentrations in forage and serum of grazing animals, contributing to a range of immune-related disorders. A greenhouse experiment was conducted to identify effects of novel endophyte strains on Cu acquisition by tall fescue (Festuca arundinacea Schreb.) varieties Grasslands Flecha and Jesup infected with a novel, non ergot producing endophyte strain AR542, and two perennial ryegrass (Lolium perenne L.) varieties Aries and Quartet infected with a novel, non lolitrem B producing strain AR1, and their noninfected (E−) forms. Individual endophyte/grass associations were cultivated in nutrient solutions at 1.0 (P+) and 0.0 mM (P−) phosphorus concentrations. The Cu2+-binding activity of extracellular root exudates, and concentrations of Cu and other heavy metals in roots and shoots were measured. Extracellular root exudates of AR542-infected vs. E− tall fescue had higher Cu2+-binding activity only in P− nutrient solution as shown by lower concentration of free Cu2+ (0.096 vs. 0.188 mmol Cu2+ g−1 root DM, respectively). The Cu2+-binding activity by root exudates of perennial ryegrass was not affected by endophyte infection, but was higher (i.e., lower concentration of free Cu2+) in P− vs. P+ nutrient solution (0.068 vs. 0.114 mmol Cu2+ g−1 root DM). In this hydroponic experiment, Cu concentrations in shoots of both grasses were not a function of Cu2+-binding activity and endophyte effects on heavy metal concentrations in shoots and roots were specific for each variety. The Cu2+-binding activity of extracellular root exudates may affect Cu accumulation by field-grown, endophyte-infected tall fescue under P-limiting growth conditions and warrants verification by more specific methods.  相似文献   

4.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

5.
T. M. Tibbets  S. H. Faeth 《Oecologia》1999,118(3):297-305
Endophytic fungi, particularly in the genus Neotyphodium, are thought to interact mutualistically with host grasses primarily by deterring herbivores and pathogens via production of alkaloidal mycotoxins. Little is known, however, about how these endophytes interact with host plants and herbivores outside the realm of agronomic forage grasses, such as tall fescue, and their livestock grazers or invertebrate pest herbivores. We tested the effects of Neotyphodium inhabiting introduced tall fescue and native Arizona fescue on preference, survival, and performance of the leaf-cutting ant, Acromyrmex versicolor, an important generalist herbivore in the southwestern United States. In a choice experiment, we determined preferences of foraging queens and workers for infected and uninfected tall fescue and Arizona fescue. In a no-choice experiment, we determined queen survival, worker production, and size of fungal gardens for foundress queens reared on diets of infected and uninfected tall fescue and Arizona fescue. Foraging workers and queens did not significantly prefer either uninfected tall fescue or Arizona fescue relative to infected grasses, although ants tended to harvest more uninfected than infected tall fescue and more infected than uninfected Arizona fescue. Queen survivorship and length of survival was greater on uninfected tall fescue, uninfected Arizona fescue, and infected Arizona fescue than on infected tall fescue or the standard diet of palo verde and mesquite leaves. No queens survived beyond 6 weeks of the study when fed the infected tall fescue diet, in contrast to the effects of the other diets. Likewise, worker production was much lower and fungal garden size much smaller on infected tall fescue than in all other treatments, including the standard diet. In general, ant colonies survived and performed better on uninfected tall fescue and infected and uninfected Arizona fescue than standard diets of palo verde and mesquite leaves. The interaction of Neotyphodium with its host grasses is highly variable and these endophytes may increase, not alter, or even decrease resistance to herbivores. The direction of the interaction depends on host and fungal genotype, herbivore species, and environmental factors. The presence of endophytes in most, if not all, host plants suggests that endophytes may alter foraging patterns, performance, and survival of herbivores, such as leaf-cutting ants, but not always in ways that increase host plant fitness. Received: 27 October 1998 / Accepted: 19 October 1998  相似文献   

6.
The relationship between vertically transmitted asexual fungal grass endophytes and their hosts is considered to be mutualistic. Results from agronomic field support this line of reasoning but recent studies have shown more variable results in natural systems. We investigated how high and low nutrient and water treatments affected biomass allocation patterns of endophyte‐infected and uninfected Festuca pratensis and F. rubra in greenhouse experiments over two growing seasons. Irrespective of infection status, both grass species showed improved performance on highly fertilized and watered soils. However, infected F. pratensis plants produced larger tillers than endophyte‐free plants on soil low in nutrients and water in the first growing season, although they (E+) otherwise showed decreased performance on nutrient‐poor soil. In low nutrient and water conditions, endophyte‐infected plants produced less tillers and had lower total biomass compared to uninfected plants, and displayed a negative phenotypic correlation between seed production and vegetative growth. The latter indicates costs of reproduction when the plant shares common resources with the fungal endophyte. However, endophyte infection status (E+, E?) interacted significantly with the soil fertilisation in terms of plant growth, having a stronger positive effect on growth in infected F. pratensis plants. In F. rubra, endophyte‐infected plants showed higher vegetative growth in fertilized and watered soils compared to uninfected plants. However, infected plants tended to produce fewer inflorescences. This had no effect on seed production, perhaps because seed production was partly replaced by asexual pseudovivipary. Contrary to the general assumption in the literature that fungal endophytes are plant mutualists, these findings suggest that the costs of endophytes may outweigh their benefits in resource limited conditions. However, the costs of endophyte infections appear to differ among the grass species studied; costs of endophytes were mainly detected in F. pratensis under low nutrient conditions. We propose that differences in response to endophyte infection in these species may depend on the differences in life‐history strategies and environmental requirements of these two fescue and fungal species and may change during the life span of the plant.  相似文献   

7.
Abstract Lolium multiflorum is a successful invader of postagricultural succession in the Inland Pampa grasslands in Argentina, becoming a dominant species in the plant community. Individual plants of this annual species are naturally highly infected with fungal endophytes (Neotyphodium sp.) from early successional stages. We assessed the effect of Neotyphodium infection on the biology of L. multiflorum. We evaluated growth attributes between endophyte infected (E+) and uninfected (E–) plants under non‐competitive conditions during the normal growing season. E+ plants produced significantly more vegetative tillers and allocated more biomass to roots and seeds. Although seed germination rates were greater in endophyte free plants, the rate of emergence and the final proportion of emerged seedlings were similar between the biotypes. The greater production of vegetative tillers, and the greater resource allocation to roots and seeds are likely to confer an ecological advantage to E+ plants, thus enabling their dominance over the E– individuals in natural grasslands.  相似文献   

8.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

9.
Susan Marks  Keith Clay 《Oecologia》1990,84(2):207-214
Summary Increasing atmospheric carbon dioxide (CO2) concentration is expected to increase plant productivity and alter plant/plant interactions, but little is known about its effects on symbiotic interactions with microorganisms. Interactions between perennial ryegrass, Lolium perenne (a C3 plant), and purpletop grass, Tridens flavus (a C4 plant), and their clavicipitaceous fungal endophytes (Acremonium lolii and Balansia epichloe, respectively) were investigated by growing the grasses under 350 and 650 l l 1 CO2 at two nutrient levels. Infected and uninfected perennial ryegrass responded with increased growth to both CO2 enrichment and nutrient addition. Biomass and leaf area of infected and uninfected plants responded similarly to CO2 enrichment. When growth analysis parameters were calculated, there were significant increases in relative growth rate and net assimilation rate of infected plants compared to uninfected plants, although the differences remained constant across CO2 and nutrient treatments. Growth of purpletop grass did not increase with CO2 enrichment or nutrient addition and there were no significant differences between infected and uninfected plants. CO2 enrichment did not alter the interactions between these two host grasses and their endophytic-fungal symbionts.  相似文献   

10.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

11.
Summary The response to a single defoliation was studied on three clones of Themeda triandra collected in the short, mid, and tall grassland regions of the Serengeti National Park (Tanzania). These sites represent a gradient of decreasing grazing intensity. Growth, allocation pattern, and several morphometric traits were monitored during an 80-day period. Clipped plants of the short and medium clones fully compensated for the reduction of biomass, while plants of the tall clone showed overcompensation. During the first two weeks after clipping, clipped plants showed lower relative growth rates than unclipped ones, whereas the opposite was observed later on. Clipped plants compensated for the removal of leaf area by producing new leaves with lower specific weights and higher nitrogen content. They also produced more, smaller tillers. Although clipped plants mobilized nonstructural carbohydrates from roots and crowns, this did not account for a significant amount of growth. Relative growth rates of unclipped plants of the short clone were higher. The relative growth rate of the short clone diminished less after clipping, but also exhibited the lowest increase later. The tall clone was the most negatively affected early, but showed the highest compensation later. Compared to the other clones, the short ecotype showed many of the characteristics that defoliation induced in each individual of any clone: higher allocation to leaf area production, higher relative growth rate, higher number but smaller size of tillers, and lower leaf specific weights.  相似文献   

12.
The mechanisms by which invasive species affect native communities are not well resolved. For example, invasive plants may influence other species through competition, altered ecosystem processes, or other pathways. We investigated one potential mechanism by which invasive plants may harm native species, allelopathy. Specifically, we explored whether native tree species respond differently to potential allelopathic effects of two invasive plant species. We assessed the separate effects of Lolium arundinaceam (tall fescue) and Elaeagnus umbellata (autumn olive) on three common successional tree species: Acer saccharinum (silver maple), Populus deltoides (eastern cottonwood), and Platanus occidentalis (sycamore). Tall fescue and autumn olive are widely planted and highly invasive or persistent throughout North America where they often grow in forest edges, old fields, and other sites colonized by pioneering tree species. In an exploratory greenhouse experiment, we applied aqueous extracts derived from soil, leaf litter, or live leaves to native trees. We compared these treatments to a sterile water control and also to minced leaves leached in water, a common, but potentially less realistic method of testing for allelopathy. For all tree species, minced leaves from tall fescue reduced the probability that seedlings emerged, and minced leaves of autumn olive reduced the number of days to emergence. During other demographic stages, the three native tree species diverged in their responses to the invasive plants. Platanus occidentalis exhibited the widest range of responses, with reduced root biomass due to minced tissue from both invasive species, reduced days to emergence and marginally reduced survival from minced tall fescue, and reduced leaf biomass from tall fescue leaf litter. Populus deltoides appeared insensitive to most extracts, although survival was marginally increased with application of minced or fresh leaf extracts from autumn olive. In addition, minced tall fescue shortened the time to seedling emergence for Acer saccharinum, potentially a positive effect. Overall, results suggest that allelopathy may be one mechanism underlying the negative impacts of tall fescue and autumn olive on other plant species, but that effects can depend strongly upon the source of allelochemicals and the tree species examined.  相似文献   

13.
Changes in light quality occur naturally within a canopy when a plant grows from unshaded to shaded conditions, and the reverse occurs after a cut that reduces shading. These changes in light quality could be responsible for the variation in leaf elongation and appearance rates of grasses. The role of blue light in leaf growth was investigated in tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.). Leaf length was measured daily following a decrease or an increase in blue light to evaluate effects on duration of leaf growth, leaf elongation and the rate of leaf appearance rate. A reduction in blue light increased sheath length by 8 to 14% and lamina length by 6 to 12% for both species. These increases could be reversed by enrichment of blue light. With low blue light treatment, final leaf length was increased due to a greater leaf elongation rate. In tall fescue, but not in perennial ryegrass, this effect was coupled with a greater phyllochron and a longer duration of leaf elongation. Development of successive leaves on a tall fescue tiller were co-ordinated. A decrease in blue light increased the duration of elongation in the oldest growing leaf and also delayed the appearance of a new leaf, maintaining this co-ordination. We conclude that final leaf size and phyllochron for tall fescue can be significantly modified by blue light. Perennial ryegrass appeared less responsive, except for displaying longer sheaths and laminae in low blue light, as also occurred for tall fescue. We hypothesize that leaf length could be regulated by the quality of the light reaching the growing region itself.  相似文献   

14.
Fungicide seed treatments increase growth of perennial ryegrass   总被引:2,自引:0,他引:2  
R. E. Falloon 《Plant and Soil》1987,101(2):197-203
Field, laboratory and glasshouse experiments were carried out to measure effects of seed treatments with captan or thiram on growth of perennial ryegrass (Lolium perenne L.). Field-sown captan- or thiram-treated seed gave twice as many seedlings as untreated seed. Spaced plants growing from fungicide-treated seed produced almost 6 times more dry matter 16 weeks after sowing than those from untreated seed. This effect, though diminishing with time, was still apparent more than a year after sowing. Fungicides in sterile agar growth medium were phytotoxic to seedlings at concentrations of 10μg/ml and greater. Seedlings grown from treated seeds sown from 5 to 15 mm away from developing colonies of the virulent seedling pathogenFusarium oxysporum Schlecht. were more than 4 times larger than those grown from untreated seeds. Captan-treated seed sown into pots containing field soil produced more and larger seedlings than untreated seed. Methyl bromide fumigation of the same soil also increased both number and size of seedlings. Fungicidal, rather than direct chemical effects, at early stages of seedling growth, account for increased growth of plants from fungicide-treated seed.  相似文献   

15.
The symbiotic relationships between Neotyphodium endophytes (Clavicipitacea) and certain cool‐season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue, Festuca arundinacea Schreb, and perennial ryegrass, Lolium perenne L. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte‐infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four‐alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three‐alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant‐ and endophyte‐related alkaloids.  相似文献   

16.
High levels of naturally occurring selenium (Se) are often found in conjunction with different forms of salinity in central California. Plants considered for use in phytoremediation of high Se levels must therefore be salt tolerant. Selenium accumulation was evaluated for the following species under increasing salt (NaCl and CaCl) conditions:Brassica napus L. (canola),Hibiscus cannibinus L. (kenaf),Festuca arundinacea L. (tall fescue), andLotus tenuis L. (birdsfoot trefoil). The experimental design was a complete randomized block with four salt treatments of <1, 5, 10, and 20 dS m-1, four plant species, three blocks, and six replicates per treatment. Ninety days after growing in the respective salt treated soil with a Se concentration of 2 mg Se kg-1 soil, added as Na2SeO4, all plant species were completely harvested. Among the species tested, shoot and root dry matter yield of kenaf was most significantly (p<0.001) affected by the highest salt treatment and tall fescue and canola were the least affected species. Generally there was a decrease in tissue accumulation of Se with increasing salt levels, except that low levels of salinity stimulated Se accumulation in canola. Canola leaf and root tissue accumulated the highest concentrations of Se (315 and 80 mg Se kg-1 DM) and tall fescue the least (35 and 7 mg Se kg-1 DM). Total soil Se concentrations all harvest were significantly (p<0.05) lower for all species at all salt treatments. Removal of Se from soil was greatest by canola followed by birdsfoot trefoil, kenaf and tall fescue. Among the four species, canola was the best candidate for removing Se under the tested salinity conditions. Kenaf may be effective because of its large biomass production, while tall fescue and birdsfoot trefoil may be effective because they can be repeatedly clipped as perennial crops.  相似文献   

17.
Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.  相似文献   

18.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

19.
Grass endophytes (Clavicipitaceae, Ascomycota) are generally considered to be mutualists which increase the host's fitness. Infected plants are often more persistent and competitive than uninfected plants, influencing population dynamics and plant community diversity. However, most of this empirical evidence is based on studies focusing on agronomically important grass species such as tall fescue or perennial ryegrass and their implications for livestock and man-made habitats. Recent studies indicate that endophyte-plant associations may be more variable, ranging from parasitic to mutualistic. In the present study, we investigated the influence of endophyte infection on two wild woodland grasses, which are naturally infected with distinct fungal endophytes: Brachypodium sylvaticum with Epichloë sylvatica and Bromus benekenii with Epichloë bromicola . An intraspecific competition experiment was conducted over two growing seasons in the greenhouse and in an experimental garden. At first harvest (after 12 weeks growing), endophyte infection had a significant negative effect on above ground dry matter yield (DMY) of B. sylvaticum , but a significant positive effect on DMY of Br. benekenii under competition. The same differential effects on DMY and on total seed number were also observed at final harvest (after 62 weeks growing). Results from Br. benekenii were consistent with our hypothesis of increased competitive abilities of infected plants in nature which could explain the high infection rate observed in natural populations. In contrast, this explanation does not hold true for B. sylvaticum , and other factors such as increased herbivore and pathogen resistance together with frequent horizontal transmission may be responsible for the very high incidence of this association in nature. Our results confirm previous predictions that beneficial effects of endophyte infection in wild grasses can vary for different grass species, even in comparable habitats.  相似文献   

20.
Tissue culture techniques, medium composition, pH value and targeted tissues, agroinfection and co-culture conditions, selection process were optimized for efficient turfgrass transformation. A highly regenerable callus lines were produced in callus induction medium modified from N6 basal medium. Six-week-old calluses were cultured on Pre-regeneration medium I for 4 days and then subjected to Agrobacterium tumefaciens. After co-cultivation at 20±1 °C in a 16 h light/8 h darkness for 3 days, the calluses were cultured on non-selective Pre-regeneration medium II supplemented with 400 mg l−1 l-cysteine for 7 days. Plantlets were regenerated on the Regeneration medium without selection pressure. A selection pressure was given to the regenerated plantlets when they were rooted on the Plantlet rooting medium. Roots appeared within 8–12 days in putative transformed plantlets. Resistant plants obtained were phenotypically normal and fully fertile. Chemical and molecular analyses confirmed that foreign genes were successfully introduced into the genome of perennial ryegrass or tall fescue. The transformation efficiency can attain 23.3% in perennial ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号