首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conventional cardiopulmonary bypass surgery (CCPB) increases the iron loading of plasma transferrin often to a state of plasma iron overload, with the presence of low molecular mass iron. Such iron is a potential risk factor for oxidative stress and microbial virulence. Here we assess 'off-pump' coronary artery surgery on the beating heart for changes in plasma iron chemistry. Seventeen patients undergoing cardiac surgery using the 'Octopus' myocardial wall stabilisation device were monitored at five time points for changes in plasma iron chemistry. This group was further divided into those (n=9) who had one- or two- (n=8) vessel grafts, and compared with eight patients undergoing conventional coronary artery surgery. Patients undergoing beating heart surgery had significantly lower levels of total plasma non-haem iron, and a decreased percentage saturation of their transferrin at all time points compared to conventional bypass patients. Plasma iron overload occurred in only one patient undergoing CCPB. Beating heart surgery appears to decrease red blood cell haemolysis, and tissue damage during the operative procedures and thereby significantly decreases the risk of plasma iron overload associated with conventional bypass.  相似文献   

2.
Extracorporeal circulation of blood during cardiopulmonary bypass surgery exposes cells to non-physiological surfaces and shear stress which can activate several regulatory cascades, and neutrophils to release superoxide and hydrogen peroxide. Shear stresses generated by pumps and suction systems cause lysis of red blood cells and the release of haemoglobin. Together the release of reactive forms of oxygen and haemoglobin can lead to the appearance of low molecular mass chelatable iron (bleomycin-detectable iron). All patients undergoing open heart surgery appear to release iron to plasma transferrin, increasing its iron saturation. In 13% of patients, however, the transferrin became fully iron-saturated, and by the end of open-heart surgery we could detect bleomycin-chelatable iron in the plasma. Saturation of transferrin with iron eliminates its iron-binding antioxidant properties, which can result in a stimulation of iron-dependent radical damage to selected detector molecules.  相似文献   

3.
《Free radical research》2013,47(2):53-58
Extracorporeal circulation of blood during cardiopulmonary bypass surgery exposes cells to non-physiological surfaces and shear stress which can activate several regulatory cascades, and neutrophils to release superoxide and hydrogen peroxide. Shear stresses generated by pumps and suction systems cause lysis of red blood cells and the release of haemoglobin. Together the release of reactive forms of oxygen and haemoglobin can lead to the appearance of low molecular mass chelatable iron (bleomycin-detectable iron). All patients undergoing open heart surgery appear to release iron to plasma transferrin, increasing its iron saturation. In 13% of patients, however, the transferrin became fully iron-saturated, and by the end of open-heart surgery we could detect bleomycin-chelatable iron in the plasma. Saturation of transferrin with iron eliminates its iron-binding antioxidant properties, which can result in a stimulation of iron-dependent radical damage to selected detector molecules.  相似文献   

4.
Cardiopulmonary bypass surgery is associated with the release of low molecular mass iron, which increases the saturation of plasma transferrin to over 50% in all adult patients treated. In a significant minority, however plasma transferrin becomes 100% iron saturated and non-transferrin bound iron can be detected in the plasma. An iron-saturated transferrin is also a common physiological finding in normal term and pre-term infants at a time when their plasma antioxidants, which protect against iron toxicity and radical scavening, are profoundly different from those seen in adults. This study was conducted to assess the extent to which antioxidants, which protect against iron toxicity, are altered in neonates, infants, and children undergoing cardiopulmonary bypass surgery.  相似文献   

5.
Oxidative stress seems to contribute to cardiopulmonary bypass (CPB)-related postoperative complications. Pediatric patients are particularly prone to these complications. With this in mind, we measured oxidative stress markers in blood plasma of 20 children undergoing elective heart surgery before, during, and up to 48 h after cessation of CPB, along with inflammatory parameters and full analysis of iron status. Ascorbate levels were decreased by approximately 50% (P < 0.001) at the time of aorta cross-clamp removal (or pump switch-off in 4 patients with partial CPB), and associated with corresponding increases in dehydroascorbate (P < 0.001, r = -0.80) and malondialdehyde (P < 0.01, r = -0.59). In contrast to the immediate oxidative response, peak levels of IL-6 and IL-8 were not observed until 3-12 h after CPB cessation. The early loss of ascorbate correlated with duration of CPB (P < 0.002, r = 0.72), plasma hemoglobin after cross-clamp removal (P < 0.001, r = 0.70), and IL-6 and IL-8 levels at 24 and 48 h after CPB (P < 0.01), but not with postoperative lactate levels, strongly suggesting that hemolysis, and not inflammation or ischemia, was the main cause of early oxidative stress. The correlation of ventilation time with early changes in ascorbate (P < 0.02, r = 0.55), plasma hemoglobin (P < 0.01, r = 0.60), and malondialdehyde (P < 0.02, r = 0.54) suggests that hemolysis-induced oxidative stress may be an underlying cause of CPB-associated pulmonary dysfunction. Optimization of surgical procedures or therapeutic intervention that minimize hemolysis (e.g., off-pump surgery) or the resultant oxidative stress (e.g., antioxidant treatment) should be considered as possible strategies to lower the rate of postoperative complications in pediatric CPB.  相似文献   

6.
Iron status and oxidative stress in beta-thalassemia patients in Jakarta   总被引:1,自引:0,他引:1  
A study on thalassemia intermedia and major patients in Jakarta was initiated to obtain a comprehensive picture of metabolic dysregulation, iron overload, oxidative stress, and cell damage. Data are presented from a group of 14 transfusion-dependent patients in an age range of 11-25 years (T) and another group of 9 frequently transfused (for at least 15 years) patients aged 17-30 years (L). A third group comprised 6 patients (aged 7 to 14 years) who had not yet obtained transfusions (N). The 21 controls (C) were voluntary students without diagnosis or clinical signs of thalassemia up to 30 years of age. The study was approved by the Ethical Clearance Board of the Medical Faculty and all blood samples from controls and patients were obtained on fully informed consent. Levels of antioxidants (vitamins A, C, E and beta-carotene) and reactive thiols are considerably decreased in transfused patients, whereas signs of iron overload and cell damage are increased (serum iron, ferritin, transferrin saturation, SGOT, SGPT, gamma-GT, bilirubin). Results can be summarized that non-transfused thalassemia intermedia patients exert slight signs of oxidative stress, and increased hemoglobin degradation but no significant indication of tissue or cell damage. This picture differs considerably from transfusion-dependent thalassemia major patients: highly significant decrease in antioxidants and thiols and tremendous iron overload and cell damage. The picture is even worsened in long-term transfused patients. Iron chelation after transfusion is not sufficient in Indonesia, because it is normally (with few exceptions) applied only once together with transfusion. Hence, one major reason of the bad condition of transfusion-dependent thalassemia patients in Indonesia appears to be frequent transfusions (on the average one per month) and insufficient chelation of one treatment per month together with transfusion.  相似文献   

7.
Adult patients undergoing cardiopulmonary bypass (CPB) surgery are subjected to increased oxidative stress and show a spectrum of lung injury. Increased levels of hydrogen peroxide (H2O2) are often seen during episodes of oxidative stress, such as the use of high FiO2s, and this molecule plays a key role in the formation of highly damaging oxidants such as the hydroxyl radical. Oxidative damage to plasma proteins was assessed by measuring free thiol groups, and antioxidant protection against H2O2 by measuring catalase activity. CPB patients (n = 39) receiving either 100% or 50% oxygen at the end of bypass were studied by measuring levels of H2O2 in breath condensate and levels of catalase in their plasma, and comparing these to pre-bypass levels. Post-bypass, all CPB patients exhaled significantly lower levels of H2O2 (P < 0.0001) at a time when they had significantly increased activity (0.809 +/- 0.11 versus 1.688 +/- 0.18 U/mg protein) of catalase in their plasma. There were no significant differences in these parameters between the 100% and 50% oxygen groups. At a time when oxidative stress is greatest, there appears to be a corresponding plasma increase in the antioxidant catalase. Whether this change is fortuitous or a response to oxidative stress is at present under consideration.  相似文献   

8.
Abstract

Adult patients undergoing cardiopulmonary bypass (CPB) surgery are subjected to increased oxidative stress and show a spectrum of lung injury. Increased levels of hydrogen peroxide (H2O2)are often seen during episodes of oxidative stress, such as the use of high FiO2s, and this molecule plays a key role in the formation of highly damaging oxidants such as the hydroxyl radical. Oxidative damage to plasma proteins was assessed by measuring free thiol groups, and antioxidant protection against H2O2 by measuring catalase activity. CPB patients (n =39) receiving either 100% or 50% oxygen at the end of bypass were studied by measuring levels of H2O2 in breath condensate and levels of catalase in their plasma, and comparing these to pre-bypass levels. Post-bypass, all CPB patients exhaled significantly lower levels of H2O2 (P < 0.0001) at a time when they had significantly increased activity (0.809 ± 0.11 versus 1.688 ±18 U/mg protein) of catalase in their plasma. There were no significant differences in these parameters between the 100% and 50% oxygen groups. At a time when oxidative stress is greatest, there appears to be a corresponding plasma increase in the antioxidant catalase. Whether this change is fortuitous or a response to oxidative stress is at present under consideration.  相似文献   

9.
Lactoferrin (Lf), present in colostrum and milk is a member of the transferrin family of iron-binding glyco-proteins, with stronger binding capacity to ferric iron than hemoglobin, myoglobin or transferrin. Unlike hemoglobin and myoglobin, iron-bound Lf is reasonably stable to gastric and duodenal digestive conditions. Unlike ferrous iron, ferric iron is not directly reactive with oxygen supporting the capacity of Lf capture of heme iron to suppress reactive oxygen species (ROS) production. We therefore hypothesized that bovine Lf could capture and thereby terminate the cycle of ROS production by heme iron. The transfer of heme iron from either intact or digested forms of hemoglobin and myoglobin and from intact ferritin was demonstrated by in vitro methods, monitoring Fe-saturation status of Lf by changes in absorptivity at 465 nm. The results are discussed in the context of new proposed opportunities for orally administered Lf to regulate oxidative damage associated with heme iron. In addition to potentially suppressing oxidative heme–iron-mediated tissue damage in the lumen, Lf is expected to also reverse the overload of ferritin-bound iron, that accompanies chronic inflammation and aging. These new proposed uses of Lf are additional to known host defense functions that include anti-microbial, anti-viral properties, immune and cancer cell growth regulation. The findings and interpretations presented require clinical substantiation and may support important additional protective and therapeutic uses for Lf in the future.  相似文献   

10.
Oxidative stress caused as a result of iron overload is implicated in clinical manifestation of beta-thalassemia/haemoglobin E (β-Thal/HbE). In this study, we investigated the cellular adaptation against oxidative stress in β-Thal/HbE patients. Twenty-four paediatric β-Thal/HbE patients and 22 healthy controls were recruited in the study. Blood samples from patients exhibited iron overload, elevation of lipid peroxidation, and marked diminution in the reduced glutathione (GSH) level. However, expression of glutamate-cysteine ligase catalytic (GCLC) subunit, a key enzyme in GSH biosynthesis, was up-regulated when compared with that in controls. GCLC protein levels were correlated with serum iron. There was an enhanced binding activity of the oligonucleotide probe for Nrf2-driven antioxidant response element (ARE) to nuclear protein from blood mononuclear cells of thalassemia subjects. In conclusion, β-Thal/HbE patients exhibit elevated plasma levels of GCLC expression and Nrf2-ARE binding activity, which may account for their adaptive survival response to oxidative stress.  相似文献   

11.
The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.17 (95% CI 0.08–0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = ? 0.13 (95% CI ? 0.21 to ? 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload concentrations in these subjects.  相似文献   

12.
The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload concentrations in these subjects.  相似文献   

13.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   

14.
Free radicals are believed to be involved in postsurgery-related complications. We studied whether cardiopulmonary bypass (CPB) operation has any immediate impact on the initiation of oxidative stress and inflammatory response by measuring isoprostanes and prostaglandin F2alpha during and 24 h following CPB. The levels of 8-iso-PGF2alpha (a major F2-isoprostane and biomarker of oxidative stress) and 15-keto-dihydro-PGF2alpha (a major metabolite of PGF2alpha and biomarker of inflammatory response) were measured in frequently collected plasma samples before, during, and up to 24 h postsurgery in 21 patients. 8-Iso-PGF2alpha levels significantly increased within 3 min (p <.0001) and continued until 50 min (p <.0001) during CPB. On the contrary, no significant increase of inflammatory response indicator, 15-keto-dihydro-PGF2alpha was found during and up to 24 h postoperatively. These findings establish an increased free radical-induced oxidative stress activity rather than inflammatory response after CPB.  相似文献   

15.
The value of tests for the detection of body iron overload was investigated in 8 aptients with clinically manifest primary hemochromatosis, 12 patients with cirrhosis and iron overload and 20 patients with liver disease and low or normal iron stores. Iron overload was defined as the presence of stainable iron in more than 50% of hepatocytes in a liver biopsy specimen. The percentages of patients with a true-positive (abnormal) or true-negative (normal) result were: serum iron concentration 65%, transferin saturation 85%, serum ferritin concentration 78%, serum ferritin:serum glutamic oxaloacetic transaminase (SGOT) index 78%, percent iron absorption 58%, percent iron absorption in relation to serum ferritin concetration 80% and percent iron absorption in relation to serum ferritin:SGOT index 93%. The calculated predictive value of a normal test result for the exclusion of iron overload in patients with liver disease, a group with an assumed prevalence of iron overload of 10%, was 98% to 99% for transferrin saturation and serum ferritin concentration used alone and 100% for these measures used together; the predictive value of an abnormal result for the diagnosis of iron overload was less than 50% for all of the above measures used alone or in combination. Hence, in patients with an increased serum ferritin concentration or transferrin saturation, or both, determination of the hepatocellular iron content of a specimen from a percutaneous liver biopsy is required for the diagnosis of iron overload.  相似文献   

16.
Short-term pure cultures and long-term cocultures of adult rat hepatocytes with rat liver epithelial cells, presumably derived from primitive biliary cells, were used to define in vitro models of iron overloaded hepatocytes in order to understand the molecular mechanism responsible for liver damage occurring in patients with hemochromatosis. In vitro iron overload was obtained by daily addition of ferric nitrilotriacetate to the culture medium. A concentration of 20 microM ferric salt induced hepatocyte iron overload with minimal cytotoxicity as evaluated by cell viability, morphological changes of treated cells and cytosolic enzyme leakage into the culture medium. The effects of iron overload on protein biosynthesis and secretion were studied in both short-term pure cultures and long-term cocultures of hepatocytes. The amounts of intracellular and newly synthesized proteins were never modified by the iron treatment. Furthermore, neither the relative amounts of transferrin and albumin mRNAs nor their translational products were altered by iron overload. Moreover, no change in the transferrin isomeric forms were observed in treated cells. In contrast, a prolonged exposure of cocultured hepatocytes to 20 microM ferric salt led to a significant decrease in the amount of proteins secreted in the medium. This decrease included the two major secreted proteins, namely albumin and transferrin, and probably all other secreted proteins. These results demonstrate that iron loading alters neither the total nor the liver specific protein synthesis activity of cultured hepatocytes. They suggest that chronic overload may impede the protein secretion process.  相似文献   

17.
Thalassemic patients often exhibit high levels of oxidative stress and iron overload, which can lead to hazardous complications. Curcuminoids, extracted from the spice turmeric, are known to have antioxidant and iron-chelating properties and have been proposed as a potential upstream therapy of thalassemia. Here we have applied proteomic techniques to study the protein profile and oxidative damage in the plasma of β-thalassemia/Hb E patients before and after treatment with curcuminoids. In this study, 10 β-thalassemia/Hb E patients were treated with 500 mg curcuminoids daily for 12 months. The plasma protein profile and protein carbonyl content were determined at baseline, 6 and 12 months using two-dimensional fluorescence difference gel electrophoresis and carbonyl immunoblotting, respectively. Other hematological, clinical, and biochemical parameters were also analyzed. Twenty-six spots, identified as coagulation factors and proteins involved in iron homeostasis, showed significantly decreased intensity in thalassemic plasma, compared to those of normal subjects. Treatment with curcuminoids up-regulated the plasma levels of these proteins and reduced their oxidative damage. Serum non-transferrin bound iron, platelet factor-3 like activity, oxidative stress parameters and antioxidant enzymes were also improved after curcuminoids treatment. This study is the first proteomic study of plasma in the thalassemic state and also shows the ameliorating role of curcuminoids towards oxidative stress and iron overload in the plasma proteome.  相似文献   

18.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.  相似文献   

19.
Chauhan A  Chauhan V  Brown WT  Cohen I 《Life sciences》2004,75(21):2539-2549
Autism is a neurological disorder of childhood with poorly understood etiology and pathology. We compared lipid peroxidation status in the plasma of children with autism, and their developmentally normal non-autistic siblings by quantifying the levels of malonyldialdehyde, an end product of fatty acid oxidation. Lipid peroxidation was found to be elevated in autism indicating that oxidative stress is increased in this disease. Levels of major antioxidant proteins namely, transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein) in the serum, were significantly reduced in autistic children as compared to their developmentally normal non-autistic siblings. A striking correlation was observed between reduced levels of these proteins and loss of previously acquired language skills in children with autism. These results indicate altered regulation of transferrin and ceruloplasmin in autistic children who lose acquired language skills. It is suggested that such changes may lead to abnormal iron and copper metabolism in autism, and that increased oxidative stress may have pathological role in autism.  相似文献   

20.

Objective

Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.

Methods

Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6), and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.

Results

The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation.

Conclusions

HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce such inflammatory response and oxidative stress and the extent of kidney injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号