首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Fibrous components other than collagen fibrils in the reticular fiber of mouse lymph node were studied by electron microscopy. Bundles of microfibrils not associated by elastin and single microfibrils dispersed among collagen fibrils were present. The diameter of the microfibrils was 13.29±2.43 nm (n=100). Elastin-associated microfibrils occurred at the periphery of the reticular fiber. Elastin was enclosed by microfibrils, thus forming the elastic fiber, which was clearly demonstrated by tannic acid-uranyl acetate staining. In the reticular fiber of lymph nodes, the elastic fiber consisted of many more microfibrils and a small amount of elastin. These microfibrils, together with the collagen fibrils, may contribut to the various functions of the reticular fibers.  相似文献   

2.
Current models of the elastic properties and structural organization of fibrillin-containing microfibrils are based primarily on microscopic analyses of microfibrils liberated from connective tissues after digestion with crude collagenase. Results presented here demonstrate that this digestion resulted in the cleavage of fibrillin-1 and loss of specific immunoreactive epitopes. The proline-rich region and regions near the second 8-cysteine domain in fibrillin-1 were easily cleaved by crude collagenase. Other sites that may also be cleaved during microfibril digestion and extraction were identified. In contrast to collagenase-digested microfibrils, guanidine-extracted microfibrils contained all fibrillin-1 epitopes recognized by available antibodies. The ultrastructure of guanidine-extracted microfibrils differed markedly from that of collagenase-digested microfibrils. Fibrillin-1 filaments splayed out, extending beyond the width of the periodic globular beads. Both guanidine-extracted and collagenase-digested microfibrils were subjected to extensive digestion by crude collagenase. Collagenase digestion of guanidine-extracted microfibrils removed the outer filaments, revealing a core structure. In contrast to microfibrils extracted from tissues, cell culture microfibrils could be digested into short units containing just a few beads. These data suggest that additional cross-links stabilize the long beaded microfibrils in tissues. Based on the microfibril morphologies observed after these experiments, on the crude collagenase cleavage sites identified in fibrillin-1, and on known antibody binding sites in fibrillin-1, a model is proposed in which fibrillin-1 molecules are staggered in microfibrils. This model further suggests that the N-terminal half of fibrillin-1 is asymmetrically exposed in the outer filaments, whereas the C-terminal half of fibrillin-1 is present in the interior of the microfibril.  相似文献   

3.
Fibrillin-containing microfibrils are polymeric structures that are difficult to extract from connective tissues. Proteolytic digestion of tissues has been utilized to release microfibrils for study. Few of the molecules that connect microfibrils to other elements in the matrix have been identified. In this study, electron microscopic immunolocalization of anti-versican antibodies in tissues and in extracted microfibrils demonstrated that the C-terminal region of versican is found associated with fibrillin microfibrils. Extraction of microfibrils followed by treatment of microfibrils under dissociating conditions suggested that the versican C terminus is covalently bound to microfibrils. Binding assays using recombinant fibrillin-1 polypeptides and recombinant lectican lectin domains indicated that the versican lectin domain binds to specific fibrillin-1 polypeptides. The versican lectin domain also bound to molecules comigrating with authentic fibrillin-1 monomers in an assay using cell culture medium. In assays using microfibrils, the versican lectin domain demonstrated preferential binding compared with other lecticans. Binding was calcium-dependent. The binding site for versican in microfibrils is most likely within a region of fibrillin-1 between calcium-binding epidermal growth factor-like domains 11 and 21. Human mutations in this region can result in severe forms of the Marfan syndrome ("neonatal" Marfan syndrome). The connection between versican and fibrillin microfibrils may be functionally significant, particularly in cardiovascular tissues.  相似文献   

4.
Extracellular proteins of cultured calf aortic smooth muscle cells consist predominantly of microfibrils 10-20 nm in diameter typical of "elastin-associated" microfibrils described in many tissues. Chemical and immunochemical evidence is presented that microfibrils consist of at least two proteins: core protein and fibronectin. Insoluble proteins of the microfibrils were obtained in the form of a pellet and antibodies raised in rabbits against these components. The antisera reacted with the insoluble microfibrillar proteins and with soluble fibronectin in enzyme-linked immunosorbent assay, and immunostained the extracellular microfibrils in cultured cells. An immunoglobulin (Ig) fraction was prepared and absorbed with fibronectin. The absorbed IgG retained its reactivity with the microfibrillar proteins but was no longer reactive with soluble fibronectin. Immunofluorescence studies were carried out using the absorbed IgG and IgG to soluble fibronectin. Both antibodies showed immunoreactive microfibrils in the extracellular matrix of cells in log phase. However, with increasing time in culture, as the cells reached confluence, the immunofluorescence of microfibrils reacting with the absorbed IgG became less intense, whereas that of microfibrils reacting with IgG to fibronectin increased; in confluent cells, essentially no staining was detected with the absorbed IgG, and a dense network of intensely stained microfibrils was seen with IgG to fibronectin. Treatment of these cultures with urea led to partial dissociation of the fibronectin and increased visualization of the microfibrils with the absorbed IgG; double-label immunofluorescence showed that both proteins occurred on the same microfibrils. The localization of immunoreactive sites to the extracellular microfibrils was confirmed by immunoelectron microscopy. Nearly quantitative cleavage with CNBr failed to dissociate the antigenically active fragments of fibronectin from the CNBr fragments of the core proteins of the microfibrils. It was concluded that microfibrils contain core proteins and fibronectin that are codistributed in insoluble, possibly covalently cross-linked, aggregates. The core proteins are first deposited by the cell and, as a function of time in culture, fibronectin gradually coats their surface.  相似文献   

5.
Conventional electron microscopy and rotary shadowing techniques have provided conflicting interpretations of microfibril ultrastructure. To address this issue, we have used quick-freeze deep-etch (QFDE) microscopy to obtain 3-dimensional surface views of microfibrils that have not been fixed, dehydrated, or stained with heavy metals. By this approach, microfibrils appear as tightly packed rows of bead-like subunits that do not display the interbead filamentous links seen by other methods. At regular 50-nm intervals along the microfibril length, a larger bead is often recognized which tends to be aligned with those from adjacent microfibrils when the microfibrils are in bundles. This evidence of organized lateral associations of microfibrils is supported by the observation of small filaments that span between the adjacent microfibrils. When QFDE microscopy was used to examine microfibrils exposed to sonication, partially dissociated microfibrils with the more typical "beads on a string" appearance were observed. Beads are also seen alone, as monomers, often with an array of small thread-like filaments extending from the bead in a "crab-like" manner. Our results suggest that the beads on a string appearance of sonicated microfibrils may result from a partial loss of protein components from the interbead domains, thus leading to exposure of a filamentous substructure. It is possible, therefore, that this phenomenon might also contribute to the beads on a string appearance of microfibrils seen using other electron microscopy techniques.  相似文献   

6.
THE SIZE OF THE CELLULOSE MICROFIBRIL   总被引:1,自引:1,他引:0       下载免费PDF全文
Recently the lateral width of the cellulose microfibril has been estimated as 30 A rather than about 150 to 200 A, by extrapolation of data from model shadowing experiments. The difference was attributed to a layer of metal deposited during shadowing. However, direct photographs of the same microfibrils parallel and perpendicular to the direction of shadowing, of unshadowed portions of microfibrils compared with shadowed portions of the same microfibrils, of silver-stained unshadowed microfibrils, and of unshadowed, unstained segments of microfibrils give no evidence of a layer of metal of this thickness in material shadowed under normal conditions. Furthermore, the evidence for microfibril strands of about 35 A in width from negative-staining experiments is subject to a bias from the form of the filaments and from variable positive adsorption of phosphotungstic acid by cellulose. Consequently, the conclusion that the true lateral width of native cellulose microfibrils is about one-fifth of the presently accepted value is not yet justified by unequivocal direct experimental evidence.  相似文献   

7.
Mine I  Okuda K 《Planta》2007,225(5):1135-1146
The mechanical strength of cell walls in the tip-growing cells of Vaucheria terrestris is weakened by treatment with proteolytic enzymes. To clarify the morphological characteristics of the components maintaining cell wall strength, the fine structures of the cell walls, with and without protease treatment, were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Observations indicated that cellulose microfibrils were arranged in random directions and overlapped each other. Most of the microfibrils observed in the inner surface of the cell wall were embedded in amorphous materials, whereas in the outer surface of the cell wall, microfibrils were partially covered by amorphous materials. The matrix components embedding and covering microfibrils were almost completely removed by protease treatment, revealing layers of naked microfibrils deposited deeply in the cell wall. Topographic data taken from AFM observations provided some additional information that could not be obtained by TEM, including more detailed images of the granular surface textures of the matrix components and the detection of microfibrils in the interior of the cell wall. In addition, quantitative AFM data of local surface heights enabled us to draw three-dimensional renderings and to quantitatively estimate the extent of the exposure of microfibrils by the enzymatic treatment.  相似文献   

8.
The morphogenesis of elastic fibers of the nuchal ligament, aorta, and lung of sheep was studied by light microscopy, transmission electron microscopy, and immunohistochemical methods for the detection of elastin. The degree of maturation of the amorphous materials of elastic fibers was assessed morphologically in preparations stained by the tannic acid and periodic acid methenamine-silver methods. With both of these methods, the amorphous components of mature fibers stained less intensely than did those of immature fibers. Elastic fibers in early stages of development consisted of many microfibrils and few, small, branching masses of immature amorphous material. Thicker fibers were formed by the coalescence of growing masses of amorphous materials. In late stages of formation of elastic fibers, the mature amorphous materials were associated with few microfibrils; and they were partially surrounded by immature amorphous materials associated with many microfibrils. Antielastin antibody reacted evenly with amorphous materials in very early stages of elastic-fiber development, but reacted only with the other zones of amorphous materials in later stages; it also reacted with the microfibrils in all stages. These findings were interpreted as indicating that the microfibrils were associated with small amounts of elastin on their surfaces. This conclusion is in agreement with ultrastructural observations showing 1) that development of microfibrils precedes that of the amorphous material and 2) that the microfibrils adjacent to the immature amorphous materials are covered with small amounts of tannic acid-positive amorphous materials. These observations suggest that microfibrils serve as sites for elastin deposition, both in early elastogenesis and in subsequent growth of elastic fibers. However, the nature of the interaction between elastin and microfibrils remains unknown.  相似文献   

9.
Mutational defects in fibrillin-rich microfibrils give rise to a number of heritable connective tissue disorders, generally termed microfibrillopathies. To understand the pathogenesis of these microfibrillopathies, it is important to elucidate the supramolecular composition of microfibrils and their interaction properties with extracellular matrix components. Here we demonstrate that the proteoglycan perlecan is an associated component of microfibrils typically close to basement membrane zones. Double immunofluorescence studies demonstrate colocalization of fibrillin-1, the major backbone component of microfibrils, with perlecan in fibroblast cultures as well as in dermal and ocular tissues. Double immunogold labeling further confirms colocalization of perlecan to microfibrils in various tissues at the ultrastructural level. Extraction studies revealed that perlecan is not covalently associated with microfibrils. High affinity interactions between fibrillin-1 and perlecan were found by kinetic binding studies with dissociation constants in the low nanomolar range. A detailed mapping study of the interaction epitopes by solid phase binding assays primarily revealed interactions of perlecan domains I and II with a central region of fibrillin-1. Analysis of perlecan null embryos showed less microfibrils at the dermal-epidermal junction as compared with wild-type littermates. The data presented indicate a functional significance for perlecan in anchoring microfibrils to basement membranes and in the biogenesis of microfibrils.  相似文献   

10.
The arrangement of cellulose microfibrils in walls of elongating parenchyma cells of Avena coleoptiles, onion roots, and celery petioles was studied in polarizing and electron microscopes by examining whole cell walls and sections. Walls of these cells consist firstly of regions containing the primary pit fields and composed of microfibrils oriented predominantly transversely. The transverse microfibrils show a progressive disorientation from the inside to the outside of the wall which is consistent with the multinet model of wall growth. Between the pit-field regions and running the length of the cells are ribs composed of longitudinally oriented microfibrils. Two types of rib have been found at all stages of cell elongation. In some regions, the wall appears to consist entirely of longitudinal microfibrils so that the rib forms an integral part of the wall. At the edges of such ribs the microfibrils can be seen to change direction from longitudinal in the rib to transverse in the pit-field region. Often, however, the rib appears to consist of an extra separate layer of longitudinal microfibrils outside a continuous wall of transverse microfibrils. These ribs are quite distinct from secondary wall, which consists of longitudinal microfibrils deposited within the primary wall after elongation has ceased. It is evident that the arrangement of cellulose microfibrils in a primary wall can be complex and is probably an expression of specific cellular differentiation.  相似文献   

11.
The microfibrils associated with elastic tissue have been shown to be predominantly proteinaceous. On the basis of their affinity for cationic stains, including ruthenium red, they have been assumed to be glycoprotein, but more evidence to support this claim has not been adduced. Despite repeated investigation of glycoprotein materials obtained by extraction of elastic tissues with reagents that appear to remove microfibrils, the chemical composition of elastin-associated microfibrils remains obscure. An electron microscopic study of the microfibrils in two elastin-rich tissues (bovine nuchal ligament and aorta) during their development was pursued using more specific histochemical methods. The periodic acid-alkaline bismuth stain (analogous to the periodic acid-Schiff stain for glycoproteins in light microscopy) has been adapted for this study. Specific aldehyde groups (confirmed by blocking with m-aminophenol or sodium borohydride) were identified after periodate oxidation as fine granules of bismuth stain. These were shown to localize specifically along the elastin-associated microfibrils in a finely punctate form. Staining of the amorphous elastic component did not occur except for a fine rim adjacent to the microfibrils. Lectin binding with concanavalin A (with ferritin markers) confirmed that there are glucose- or mannose-containing proteins associated with the microfibrillar component of elastic tissue. This was true of these microfibrils in all layers of the aortic wall and throughout the ligament. It was also true of mature adult tissues in which there was a lesser proportion of microfibrils. It is concluded that elastin-associated microfibrils really are associated with glycoprotein(s).  相似文献   

12.
Tobias I. Baskin 《Protoplasma》2001,215(1-4):150-171
Summary The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae,Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

13.
Summary The characteristics of elastin-associated microfibrils were investigated in the tunica adventitia of mouse aortas at the ultrastructural cytochemical level. The high iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method specific for sulphate groups was used with and without prior treatment ofen bloc specimens with either monopersulphate or cupric sulphite reagent. Amorphous elastin formed a clearly identifiable central core with microfibrils located both peripherally and interstitially. Sequential oxidation with monopersulphate and HID-TCH-SP demonstrated a characteristic staining for oxytalan fibres and intensely stained the microfibrils, whereas amorphous elastin stained weakly. Sequential thiosulphation with cupric sulphite and HID-TCH-SP for the demonstration of disulphide linkages and sulphydryl groups intensely stained microfibrils and weakly to moderately stained the amorphous elastin. This reactivity of the microfibrils was not altered by digestion with chondroitinase ABC, performed prior to or after treatment with either monopersulphate or cupric sulphite. In the specimens not exposed to either monopersulphate or cupric sulphite there was no definite HID-TCH-SP staining of microfibrils and amorphous elastin. Further, immunostaining with rabbit antibody specific for mouse fibronectin localized fibronectin in the microfibrils but not in the amorphous, elastin. These results indicate that elastin-associated microfibrils in mouse aorta lack stainable sulphate complex carbohydrates but are enriched with either disulphide or sulphydryl groups, or both, and further demonstrate the close correlation between these glycoproteins and fibronectin.  相似文献   

14.
A method of isolating alpha-keratin microfibrils which avoids the degradation previously associated with the use of chemical, physical or enzymic procedures has been developed. Electron microscope studies of the isolation procedure establish that the microfibrils originate from the presumptive cortical cells. A purification procedure, monitored by electron microscopy, has enabled microfibrils to be isolated on a scale sufficient for chemical characterization. The amino acid composition of the microfibrils is very similar to that of low-sulphur protein fractions extracted from a range of hard mammalian keratins and thus provides direct experimental evidence for the assumption that the low-sulphur proteins comprise the microfibril in alpha-keratin.  相似文献   

15.
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.  相似文献   

16.
1. The microfibrils contained within the lutoid particles of Hevea brasiliensis latex obtained from young tissue have been isolated by methods based on low-speed centrifugation, isoelectric precipitation and gel filtration. 2. The isolated microfibrils behave as a single protein having an isoelectric point of about 4 as determined by paper electrophoresis. 3. The only components so far detected in the microfibrils are protein and possibly carbohydrate; nucleic acid appears to be absent. 4. The amino acid composition of the microfibril protein shows no unusual features. 5. In latex from the more mature laticiferous tissues of H. brasiliensis, the lutoid particles appear to be devoid of microfibrils or their protein decomposition products.  相似文献   

17.
The lattice images of the alpha-chitin microfibrils from lobster tendon were recorded with a transmission electron microscope operated at 120 keV. It was concluded that a close resemblance exists between alpha-chitin microfibrils and cellulose microfibrils. In both cases, the microfibrils are elongated single crystals (crystallites) of high perfection, with the chains aligned and probably fully extended along the microfibril axis.  相似文献   

18.
《Journal of molecular biology》2018,430(21):4142-4155
Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems.  相似文献   

19.
Complete cellulase, an endoglucanase (EGV) with cellulose-binding domain (CBD) and a mutant endoglucanase without CBD (EGI) were utilized for the hydrolysis of a fully bleached reed Kraft pulp sample. The changes of microfibrils on the fiber surface were examined with tapping mode atomic force microscopy (TM–AFM) phase imaging. The results indicated that complete cellulase could either peel the fibrillar bundles along the microfibrils (peeling) or cut microfibrils into short length across the length direction (cutting) during the process. After 24 h treatment, most orientated microfibrils on the cellulose fiber surface were degraded into fragments by the complete cellulase. Incubation with endoglucanase (EGV or EGI) also caused peeling action. But no significant size reduction of microfibrils length was observed, which was probably due to the absence of cellobiohydrolase. The AFM phase imaging clearly revealed that individual EGV particles were adsorbed onto the surface of a cellulose fiber and may be bound to several microfibrils.  相似文献   

20.
Pore canal shape related to molecular architecture of arthropod cuticle   总被引:1,自引:0,他引:1  
The rotating structure of pore canals is interpreted in terms of the Bouligand model of rotating layers of chitin-protein microfibrils, and the daily growth layer system in insects. Crustacean and arachnid examples are also used. Pore canals are flattened into ribbons by neighbouring microfibrils. The ribbons run straight when traversing layers with preferred microfibril orientation, but rotate in phase through lamellate layers in which the layers of microfibrils also rotate. Oblique sections of models show that the parabolic artefact derived from microfibrils, and the parabolic arcs of pore canals seen as crescents in section, only superimpose, as they do in actual sections, when both systems have the same sense of rotation. Pore canal rotation may be determined by chitin-protein architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号