首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.  相似文献   

4.
Manuele Rebsamen 《Autophagy》2016,12(6):1061-1062
The mechanistic target of rapamycin (serine/threonine kinase) complex 1 (MTORC1) acts as a crucial regulator of cellular metabolism by integrating growth factor presence, energy and nutrient availability to coordinate anabolic and catabolic processes, and controls cell growth and proliferation. Amino acids are critical for MTORC1 activation, but the molecular mechanisms involved in sensing their presence are just beginning to be understood. We recently reported that the previously uncharacterized amino acid transporter SLC38A9 is a member of the lysosomal sensing machinery that signals amino acid availability to MTORC1. SLC38A9 is the first component of this complex shown to physically engage amino acids, suggesting a role at the core of the amino acid-sensing mechanism.  相似文献   

5.

Background and Aims

Nitrogen (N) availability in the forest soil is extremely low and N economy has a special importance in woody plants that are able to cope with seasonal periods of growth and development over many years. Here we report on the analysis of amino acid pools and expression of key genes in the perennial species Populus trichocarpa during autumn senescence.

Methods

Amino acid pools were measured throughout senescence. Expression analysis of arginine synthesis genes and cationic amino acid transporter (CAT) genes during senescence was performed. Heterologous expression in yeast mutants was performed to study Pt-CAT11 function in detail.

Key Results

Analysis of amino acid pools showed an increase of glutamine in leaves and an accumulation of arginine in stems during senescence. Expression of arginine biosynthesis genes suggests that arginine was preferentially synthesized from glutamine in perennial tissues. Pt-CAT11 expression increased in senescing leaves and functional characterization demonstrated that Pt-CAT11 transports glutamine.

Conclusions

The present study established a relationship between glutamine synthesized in leaves and arginine synthesized in stems during senescence, arginine being accumulated as an N storage compound in perennial tissues such as stems. In this context, Pt-CAT11 may have a key role in N remobilization during senescence in poplar, by facilitating glutamine loading into phloem vessels.  相似文献   

6.
On the rate of messenger decay during amino acid starvation   总被引:5,自引:0,他引:5  
In arginine auxotropic strains of Escherichia coli the rate of decay of functional ornithine transcarbamylase messenger is the same in the presence and absence of arginine. The relevance of this observation to the rate of ribosome travel in the presence and absence of arginine is discussed. Data showing the absence of translational repression by arginine are presented.  相似文献   

7.
Summary. The proton coupled amino acid transporter PAT1 expressed in intestine, brain, and other organs accepts L- and D-proline, glycine, and L-alanine but also pharmaceutically active amino acid derivatives such as 3-amino-1-propanesulfonic acid, L-azetidine-2-carboxylic acid, and cis-4-hydroxy-D-proline as substrates. We systematically analyzed the structural requirements for PAT1 substrates by testing 87 amino acids, proline homologs, indoles, and derivatives. Affinity data and effects on membrane potential were determined using Caco-2 cells. For aliphatic amino acids, a blocked carboxyl group, the distance between amino and carboxyl group, and the position of the hydroxyl group are affinity limiting factors. Methylation of the amino group enhances substrate affinity. Hetero atoms in the proline template are well tolerated. Aromatic α-amino acids display low affinity. PAT1 interacts strongly with heterocyclic aromatic acids containing an indole scaffold. The structural requirements of PAT1 substrates elucidated in this study will be useful for the development of prodrugs.  相似文献   

8.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:27,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

9.
10.
Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.  相似文献   

11.
12.
The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na+-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K+ gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na+. Internal Na+ exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.  相似文献   

13.
14.
15.
A hybrid protein that comprises the beta-lactamase signal peptide fused precisely to chicken muscle triosephosphate isomerase is not secreted into the periplasm of Escherichia coli. The protein can be secreted, however, if an arginine residue at position 3 of the isomerase is replaced by either a serine or a proline residue. In contrast, replacement of a neighboring lysine residue has no effect on secretion of the protein. Furthermore, if the arginine is removed from position 3 to generate a secreted protein, but is then reintroduced in place of the neighboring lysine, the blockade to secretion is re-established. The singular effect of the arginine residue on secretion does not result from the role this residue plays in the formation or stabilization of the native isomerase structure: mutational alterations remote from the N terminus of the isomerase that prevent the proper folding of the protein do not relieve the block to secretion. The finding that an arginine residue prevents secretion while a lysine residue does not, suggests that basic residues near the mature N terminus of a secreted protein must be deprotonated if orderly export is to occur. This implies that the signal peptide along with the N-terminal portion of the mature protein partitions directly into the lipid bilayer in the course of the secretory process.  相似文献   

16.
17.
Noskov SY 《Proteins》2008,73(4):851-863
The recently published X-ray structure of LeuT, a Na(+)/Cl(-)-dependent neurotransmitter transporter, has provided fresh impetus to efforts directed at understanding the molecular principles governing specific neurotransmitter transport. The combination of the LeuT crystal structure with the results of molecular simulations enables the functional data on specific binding and transport to be related to molecular structure. All-atom FEP and molecular dynamics (MD) simulations of LeuT embedded in an explicit membrane were performed alongside a decomposition analysis to dissect the molecular determinants of the substrate specificity of LeuT. It was found that the ligand must be in a zwitterionic (ZW) form to bind tightly to the transporter. The theoretical results on the absolute binding-free energies for leucine, alanine, and glycine show that alanine can be a potent substrate for LeuT, although leucine is preferred, which is consistent with the recent experimental data (Singh et al., Nature 2007;448:952-956). Furthermore, LeuT displays robust specificity for leucine over glycine. Interestingly, the ability of LeuT to discriminate between substrates relies on the dynamics of residues that form its binding pocket (e.g., F253 and Q250) and the charged side chains (R30-D404) from a second coordination shell. The water-mediated R30-D404 salt bridge is thought to be part of the extracellular (EC) gate of LeuT. The introduction of a polar ligand such as glycine to the water-depleted binding pocket of LeuT gives rise to structural rearrangements of the R30-D404-Q250 hydrogen-bonding network and leads to increased hydration of the binding pocket. Conformational changes associated with the broken hydrogen bond between Q250 and R30 are shown to be important for tight and selective ligand binding to LeuT.  相似文献   

18.
In this study we investigated the influence of harvest date and genotype on the ruminai degradability of the organic matter of ensiled maize grains. Grains of the varieties Avenir, Byzance, CGS 5104 and CGS 5107 from six different harvest dates were available; they are classified as intermediate types between flint and dent com. The six harvest dates, during which time the dry matter content of the ensiled grains rose from 52% to 66%, extended from 1st September to 19th October. Assuming a passage rate of k=0.08, the effective ruminai degradability declined in this period on average from 93% to just under 79%; variety‐specific deviations also increased markedly during this period. The dry matter content (x, DM in %) of the ensiled grains had a profound influence on ruminai degradation: a highly significant curvilinear decline in ruminai degradability (y) was calculated at increasing DM levels (k = 0.08), which can be described by the equation y = ?0.072x2 (±0.010)+7.417x(±1.186)?98.71(±34.58)(B=0.96;sy,x[%]=1.36).

The ruminai degradability of ensiled maize grains is about 5–10% higher than that of fresh maize grains.  相似文献   

19.
The study was conducted to evaluate the variability of efficiency of lysine utilisation in different feed proteins for growing pigs including wheat, unprocessed soybean flakes (SF), hydrothermal processed SF, corn gluten meal (CGM), two batches of soybean protein concentrate (SPC-1, SPC-2), different batches of peas (Pisum sativum) and field beans (Vicia faba). Data about efficiency of lysine are important for further conclusions related to lysine requirement in dependence on level of daily protein deposition. In N-balance studies 161 growing barrows (40-65 kg BW) of the genotype [Piétrain x (Duroc x Landrace)] were randomly allotted into 23 experimental treatments (n = 7) with diets in which lysine was the first limiting amino acid. Data from the N-balance trials were used to calculate efficiency of lysine and consequently lysine requirement based on an exponential N-utilisation model. Results from the present studies indicate that efficiency of lysine in different feed proteins varies in a very wide range and this variation greatly affected the calculated lysine requirement. Therefore, the variation in efficiency of lysine should be taken into account in requirement calculations and consequently in diet formulation for pigs. The results of model calculation for the lysine requirement depending on daily protein deposition (130, 145 and 160 g/d) and efficiency of lysine are given for different standards for comparison (g x kg(-0.67) x d(-1), g x d(-1) and percentage of lysine in the diet). The calculated lysine requirement of growing barrows (50 kg BW) corresponding to an average lysine efficiency was 15.5, 18.0 and 21.1 g/d for daily protein deposition of 130, 145 and 160 g, respectively. The results of the model calculation for 145 or 160 g daily protein deposition are in agreement with actual studies and recommendations of NRC (1998) and DLG (2002) for lysine supply.  相似文献   

20.
Sd phage were incubated in 1 m-O-methylhydroxylamine. At various time-intervals, samples of modified phage were isolated and disrupted either by heating or by treatment with detergent. Changes in viscosity and buoyant density of disrupted preparations took place in the course of modification. Three transient synchronous drops in viscosity and buoyant density levels were observed with minima at five minutes, one and three hours of modification. The specific viscosity of the preparations at minima was 10 to 20% that of the disrupted unmodified phage.Properties of the phage preparation isolated during the third period of decreased viscosity were studied in more detail. This preparation, subjected to thermal disruption, gives a single DNA-containing band in Cs2SO4 gradient centrifugation corresponding to a buoyant density of 1.37 g/cm3 (cf. 1.39, 1.29 and 1.43 g/cm3 for whole phage, phage ghosts and native phage DNA, respectively).The band contains practically all the 35S label that was present in the starting phage, suggesting that it corresponds to a complex of phage DNA with protein. Electron microscopy revealed complexes as thick strands of 50 to 300 Å diameter bonded to globular particles of varying size.In four hours of modification, the viscosity and buoyant density of disrupted phage returned to values characteristic of unmodified preparations. The DNA band contained no 35S label. Electron microscopy of the substance of this band revealed fibres of 20 Å diameter.A possible explanation of the results is based on the assumption of pre-existing non-covalent interaction of C(4)—NH2 moieties of cytidine residues with nucleophilic groupings of coating protein within the virion. It is assumed that it is this interaction that holds DNA in “non-native” conformation within intact phage particles and thus explains its peculiar properties discovered earlier. In the present case, the interaction determines the formation of DNA-protein crosslinks under O-methylhydroxylamine treatment via the earlier postulated intermediate product of cytosine modification. Restoration of “normal” physical properties of disrupted phage after more prolonged modification is explained by cleavage of the DNA-protein cross-links due to reaction of the postulated intermediate with O-methylhydroxylamine affording N(4)-methoxy-6-methoxy-amino-5,6-dihydrocytidine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号