首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
Hypoxia is a feature of solid tumors. Most tumors are at least partially hypoxic. This hypoxic environment plays a critical role in promoting resistance to anticancer drugs. PHLPP, a novel family of Ser/Thr protein phosphatases, functions as a tumor suppressor in colon cancers. Here, we show that the expression of both PHLPP isoforms is negatively regulated by hypoxia/anoxia in colon cancer cells. Interestingly, a hypoxia-induced decrease of PHLPP expression is attenuated by knocking down HIF1α but not HIF2α. Whereas the mRNA levels of PHLPP are not significantly altered by oxygen deprivation, the reduction of PHLPP expression is caused by decreased protein translation downstream of mTOR and increased degradation. Specifically, hypoxia-induced downregulation of PHLPP is partially rescued in TSC2 or 4E-BP1 knockdown cells as the result of elevated mTOR activity and protein synthesis. Moreover, oxygen deprivation destabilizes PHLPP protein by decreasing the expression of USP46, a deubiquitinase of PHLPP. Functionally, downregulation of PHLPP contributes to hypoxia-induced chemoresistance in colon cancer cells. Taken together, we have identified hypoxia as a novel mechanism by which PHLPP is downregulated in colon cancer, and the expression of PHLPP may serve as a biomarker for better understanding of chemoresistance in cancer treatment.  相似文献   

4.
5.
Discovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ). In DGKδ-deficient cells, we found reduced Akt phosphorylation downstream of three receptor tyrosine kinases. Phosphorylation upstream of Akt was not affected. Our data indicate that PKCα, which is excessively active in DGKδ-deficient cells, promotes dephosphorylation of Akt through pleckstrin homology domain leucine-rich repeats protein phosphatase (PHLPP) 2. Depletion of either PKCα or PHLPP2 rescued Akt phosphorylation in DGKδ-deficient cells. In contrast, depletion of PHLPP1, another Akt phosphatase, failed to rescue Akt phosphorylation. Other PHLPP substrates were not affected by DGKδ deficiency, suggesting mechanisms allowing specific modulation of Akt dephosphorylation. We found that β-arrestin 1 acted as a scaffold for PHLPP2 and Akt1, providing a mechanism for specificity. Because of its ability to reduce Akt phosphorylation, we tested whether depletion of DGKδ could attenuate tumorigenic properties of cultured cells and found that DGKδ deficiency reduced cell proliferation and migration and enhanced apoptosis. We have, thus, discovered a novel pathway in which diacylglycerol signaling negatively regulates Akt activity. Our collective data indicate that DGKδ is a pertinent cancer target, and our studies could lay the groundwork for development of novel cancer therapeutics.  相似文献   

6.
7.
8.
9.
10.
11.
12.

Background

α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells.

Methodology/Principal Findings

α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP''s inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling.

Conclusion

Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.  相似文献   

13.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling.Subject terms: Obesity, Metabolic syndrome, Outcomes research  相似文献   

14.
PHLPP1 belongs to a novel family of Ser/Thr protein phosphatases that serve as tumor suppressors by negatively regulating Akt signaling. Our recent studies have demonstrated that loss of PHLPP expression occurs at high frequency in colorectal cancer. In this study, we identified PHLPP1 as a proteolytic target of a β-TrCP-containing Skp-Cullin 1-F-box protein (SCF) complex (SCFβ-TrCP) E3 ubiquitin ligase in a phosphorylation-dependent manner. Overexpression of wild-type but not ΔF-box mutant β-TrCP leads to decreased expression and increased ubiquitination of PHLPP1, whereas knockdown of endogenous β-TrCP has the opposite effect. In addition, we show that the β-TrCP-mediated degradation requires phosphorylation of PHLPP1 by casein kinase I and glycogen synthase kinase 3β (GSK-3β), and activation of the phosphatidylinositol 3-kinase/Akt pathway suppresses the degradation of PHLPP1 by inhibiting the GSK-3β activity. Furthermore, expression of a degradation-deficient PHLPP1 mutant in colon cancer cells results in a more effective dephosphorylation of Akt and inhibition of cell growth. Taken together, our findings demonstrate a key role for β-TrCP in controlling the level of PHLPP1, and activation of Akt negatively regulates this degradation process.Hyperactivation of phosphatidylinositol 3-kinase/Akt signaling is commonly associated with human cancers (1, 5, 27). Inability to terminate the growth and survival signals mediated by Akt is one of the major mechanisms contributing to the development of cancer (1, 22, 32). The activation of Akt involves two phosphorylation steps: it is first phosphorylated at the activation loop (Thr308) within the kinase core by PDK-1 and subsequently at the hydrophobic motif (Ser473) in the C terminus by the TORC2 complex (22). Since the activity of Akt is tightly controlled by phosphorylation, dephosphorylation of Akt leads to effective signaling termination by inactivating the kinase. Recently, a novel family of Ser/Thr protein phosphatases, PHLPP, has been identified to fulfill the role of a negative regulator for Akt via direct dephosphorylation (3, 14). Two isoforms of PHLPP, namely PHLPP1 and PHLPP2, are found in this phosphatase family. Although the two isoforms of PHLPP share their ability to dephosphorylate Akt, each PHLPP preferentially regulates a subset of Akt isoforms in human lung cancer cells (3). Several lines of evidence suggest that PHLPP functions as a tumor suppressor. For example, overexpression of PHLPP in glioblastoma and colon cancer cells inhibits tumorigenesis in xenografted nude mice (14, 20), while decreased PHLPP expression correlates with increased metastastic potential in breast cancer cells (26). Furthermore, our recent studies have shown that downregulation of both PHLPP isoforms occurs at high frequency in colorectal cancer clinical samples (20). Loss of tumor suppressor expression can be caused by alterations at the gene level such as loss of heterozygosity or gene methylation. However, dysregulation of protein degradation pathways has also been implicated as a reason for downregulation of tumor suppressors (2, 6, 16).The ubiquitin (Ub) proteasome pathway controls degradation of the majority of eukaryotic proteins (12). β-TrCP belongs to a large family of F-box-containing proteins, and it serves as the substrate recognition subunit in the SCF (Skp1-Cullin 1-F-box protein) Ub-E3 ligase protein complex (4). By regulating the proteolytic process of its substrates, β-TrCP plays an important role in controlling cell cycle and cancer biogenesis (10). It is believed that β-TrCP-mediated ubiquitination requires phosphorylation of its substrates (35). A consensus binding motif with the sequence of DSG(X)2-nS (so-called “phospho-degron”) has been proposed, in which the two serine residues are phosphorylated prior to binding to β-TrCP (4). However, variations of this motif, including replacement of the serine residues with phosphomimetic residues (e.g., Glu or Asp) in the substrate sequence, have been shown to be equally effective in mediating association with β-TrCP (31, 34).In this study, we report the identification of PHLPP1 as a proteolytic target of β-TrCP. We show that the degradation process of PHLPP1 depends on casein kinase I (CK1)- and glycogen synthase kinase 3 (GSK-3)-mediated phosphorylation, and activation of Akt negatively regulates PHLPP1 turnover. In addition, a PHLPP1 phosphorylation/degradation mutant antagonizes Akt more effectively in colon cancer cells.  相似文献   

15.
Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress–induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop/ cells are partially resistant to ER stress–induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK''s down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress–induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a “two-hit” model of ER stress–induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.  相似文献   

16.
17.
18.
19.
20.
Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn’s disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.Key words: Inflammatory bowel disease, endoplasmic reticulum stress, IL-8, Gro-α, p38 MAPK  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号