首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SARS‐CoV‐2 infection results in impaired interferon response in patients with severe COVID‐19. However, how SARS‐CoV‐2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS‐CoV‐2‐infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus‐derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3′UTR of interferon‐stimulated genes and represses their expression in a miRNA‐like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID‐19 patients. We propose that SARS‐CoV‐2 can potentially employ a virus‐derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon‐mediated immune response.  相似文献   

2.
SARS‐CoV‐2 is a newly emerged coronavirus that caused the global COVID‐19 outbreak in early 2020. COVID‐19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS‐CoV‐2–host cell interactions and entry mechanisms remain poorly understood. Investigating SARS‐CoV‐2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS‐CoV‐2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH‐independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS‐CoV‐2 entered the cytosol via acid‐activated cathepsin L protease 40–60 min post‐infection. Overexpression of TMPRSS2 in non‐TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS‐CoV‐2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS‐CoV‐2 sorting into either pathway.  相似文献   

3.
The COVID‐19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS‐CoV‐2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS‐CoV‐2 E protein and by comparing it with the SARS‐CoV E protein. The E protein amino acid sequence, structure, self‐assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS‐CoV‐2 and SARS‐CoV E proteins are similar in many respects, specific studies on the SARS‐CoV‐2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.  相似文献   

4.
The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.  相似文献   

5.
SARS‐CoV‐2 is the coronavirus responsible for the COVID‐19 pandemic. Proteases are central to the infection process of SARS‐CoV‐2. Cleavage of the spike protein on the virus''s capsid causes the conformational change that leads to membrane fusion and viral entry into the target cell. Since inhibition of one protease, even the dominant protease like TMPRSS2, may not be sufficient to block SARS‐CoV‐2 entry into cells, other proteases that may play an activating role and hydrolyze the spike protein must be identified. We identified amino acid sequences in all regions of spike protein, including the S1/S2 region critical for activation and viral entry, that are susceptible to cleavage by furin and cathepsins B, K, L, S, and V using PACMANS, a computational platform that identifies and ranks preferred sites of proteolytic cleavage on substrates, and verified with molecular docking analysis and immunoblotting to determine if binding of these proteases can occur on the spike protein that were identified as possible cleavage sites. Together, this study highlights cathepsins B, K, L, S, and V for consideration in SARS‐CoV‐2 infection and presents methodologies by which other proteases can be screened to determine a role in viral entry. This highlights additional proteases to be considered in COVID‐19 studies, particularly regarding exacerbated damage in inflammatory preconditions where these proteases are generally upregulated.  相似文献   

6.
Despite intensive efforts, there is no effective remedy for COVID‐19. Moreover, vaccination efficacy declines over time and may be compromised against new SARS‐CoV‐2 lineages. Therefore, there remains an unmet need for simple, accessible, low‐cost and effective pharmacological anti‐SARS‐CoV‐2 agents. ArtemiC is a medical product comprising artemisinin, curcumin, frankincense and vitamin C, all of which possess anti‐inflammatory and anti‐oxidant properties. The present Phase II placebo‐controlled, double‐blinded, multi‐centred, prospective study evaluated the efficacy and safety of ArtemiC in patients with COVID‐19. The study included 50 hospitalized symptomatic COVID‐19 patients randomized (2:1) to receive ArtemiC or placebo oral spray, twice daily on Days 1 and 2, beside standard care. A physical examination was performed, and vital signs and blood tests were monitored daily until hospital discharge (or Day 15). A PCR assessment of SARS‐CoV‐2 carriage was performed at screening and on last visit. ArtemiC improved NEWS2 in 91% of patients and shortened durations of abnormal SpO2 levels, oxygen supplementation and fever. No treatment‐related adverse events were reported. These findings suggest that ArtemiC curbed deterioration, possibly by limiting cytokine storm of COVID‐19, thus bearing great promise for COVID‐19 patients, particularly those with comorbidities.  相似文献   

7.
Since COVID‐19 took a strong hold around the globe causing considerable morbidity and mortality, a lot of effort was dedicated to manufacturing effective vaccines against SARS‐CoV‐2. Many questions have since been raised surrounding the safety of the vaccines, and a lot of media attention to certain side effects. This caused a state of vaccine hesitancy that may prove problematic in the global effort to control the virus. This review was undertaken with the aim of putting together all the reported cardiovascular and haematological events post COVID‐19 vaccination in published literature and to suggest possible mechanisms to explain these rare phenomena.  相似文献   

8.
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS‐CoV‐2. Notably, neutralizing antibodies against SARS‐CoV‐2 isolated from COVID‐19 patients interfered with SARS‐CoV‐2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS‐CoV‐2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS‐CoV‐2, both DC subsets efficiently captured SARS‐CoV‐2 via heparan sulfate proteoglycans and transmitted the virus to ACE2‐positive cells. Notably, human primary nasal cells were infected by SARS‐CoV‐2, and infection was blocked by pre‐treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS‐CoV‐2 infection.  相似文献   

9.
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease.  相似文献   

10.
The COVID‐19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host–virus interactions are essential for the development of new COVID‐19 treatment strategies. Here, we show that SARS‐CoV‐2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin‐dependent kinases were observed. Further, cyclin D depletion was independent of SARS‐CoV‐2‐mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small‐interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co‐immunoprecipitated with SARS‐CoV‐2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS‐CoV‐2 infection to restore efficient assembly and release of newly produced virions.  相似文献   

11.
12.
Cell‐intrinsic responses mounted in PBMCs during mild and severe COVID‐19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS‐CoV and SARS‐CoV‐2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT–PCR experiments and single‐cell RNA sequencing revealed JAK/STAT‐dependent induction of interferon‐stimulated genes (ISGs) but not proinflammatory cytokines. This SARS‐CoV‐2‐specific response was most pronounced in monocytes. SARS‐CoV‐2‐RNA‐positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS‐CoV‐2‐specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS‐CoV‐2‐ and, to a much lesser extent, SARS‐CoV particles stimulate JAK/STAT‐dependent, monocyte‐accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID‐19.  相似文献   

13.
14.
Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS‐CoV‐2 causing the global COVID‐19 outbreak. Here, we study the binding of two SARS‐CoV‐2‐like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin‐converting enzyme 2 (hACE2), the receptor of SARS‐CoV‐2. We find that the spike protein receptor‐binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS‐CoV‐2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2‐expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS‐CoV‐2. Additionally, cryo‐EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS‐CoV‐2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS‐CoV‐2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.  相似文献   

15.
SARS‐CoV‐2 infection causes broad‐spectrum immunopathological disease, exacerbated by inflammatory co‐morbidities. A better understanding of mechanisms underpinning virus‐associated inflammation is required to develop effective therapeutics. Here, we discover that SARS‐CoV‐2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG‐I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS‐CoV‐2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS‐CoV‐2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation‐associated COVID‐19.  相似文献   

16.
SARS‐CoV‐2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS‐CoV‐2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS‐CoV‐2 viral proteins. Here, we show that the nucleocapsid of SARS‐CoV‐2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS‐CoV‐2‐infected monocytes show enhanced cellular interleukin‐1β (IL‐1β) expression, but reduced IL‐1β secretion. While SARS‐CoV‐2 infection promotes activation of the NLRP3 inflammasome and caspase‐1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS‐CoV‐2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase‐1. These insights into how SARS‐CoV‐2 antagonizes cellular inflammatory responses may open new avenues for treating COVID‐19 in the future.  相似文献   

17.
ObjectivesThe impacts of the current COVID‐19 pandemic on maternal and foetal health are enormous and of serious concern. However, the influence of SARS‐CoV‐2 infection at early‐to‐mid gestation on maternal and foetal health remains unclear.Materials and methodsHere, we report the follow‐up study of a pregnant woman of her whole infective course of SARS‐CoV‐2, from asymptomatic infection at gestational week 20 to mild and then severe illness state, and finally cured at Week 24. Following caesarean section due to incomplete uterine rupture at Week 28, histological examinations on the placenta and foetal tissues as well as single‐cell RNA sequencing (scRNA‐seq) for the placenta were performed.ResultsCompared with the gestational age‐matched control placentas, the placenta from this COVID‐19 case exhibited more syncytial knots and lowered expression of syncytiotrophoblast‐related genes. The scRNA‐seq analysis demonstrated impaired trophoblast differentiation, activation of antiviral and inflammatory CD8 T cells, as well as the tight association of increased inflammatory responses in the placenta with complement over‐activation in macrophages. In addition, levels of several inflammatory factors increased in the placenta and foetal blood.ConclusionThese findings illustrate a systematic cellular and molecular signature of placental insufficiency and immune activation at the maternal–foetal interface that may be attributed to SARS‐CoV‐2 infection at the midgestation stage, which highly suggests the extensive care for maternal and foetal outcomes in pregnant women suffering from COVID‐19.  相似文献   

18.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   

19.
ObjectivesRecent studies have shown the presence of SARS‐CoV‐2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high‐risk group for COVID‐19. Based on these findings, we assessed SARS‐CoV‐2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID‐19 and cytokine fluctuations in maternal and foetal tissues.Materials and MethodsRemnant SARS‐CoV‐2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS‐CoV‐2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay.ResultsResidual SARS‐CoV‐2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly.ConclusionsOur study showed that SARS‐CoV‐2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid.  相似文献   

20.
Treatment options for COVID‐19, caused by SARS‐CoV‐2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS‐CoV‐2–host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS‐CoV‐2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP‐MS) and the complementary proximity‐based labeling MS method (BioID‐MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS‐CoV‐2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image‐based drug screen with infectious SARS‐CoV‐2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein–protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号