首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long noncoding RNAs (lncRNAs) exert key regulators in cancer development and progression. The functional significance of lncRNA small nucleolar RNA host gene 20 (SNHG20) was reported in gastric cancer (GC); however, the underlying molecular mechanism in GC development is largely unknown. Here, our results showed that the lncRNA SNHG20 expression was significantly higher in GC tissues compared with adjacent normal tissues by quantitative real-time PCR (qRT-PCR) analysis. Higher lncRNA SNHG20 expression was highly associated with tumor size and lymphatic metastasis of patients. Patients with higher lncRNA SNHG20 expression predicted a short disease-free survival (DFS) and overall survival (OS). Furthermore, lncRNA SNHG20 expression negatively associated with miR-495-3p expression and regulated miR-495-3p expression. Function assays confirmed that lncRNA SNHG20 knockdown using RNA interference suppressed cell proliferation and invasion of GC by negatively regulating miR-495-3p expression. Moreover, we demonstrated that lncRNA SNHG20 inhibited zinc finger protein X-linked (ZFX) expression by negatively miR-495-3p expression in GC cells. In vivo, the current study also indicated that lncRNA SNHG20 knockdown reduced the tumor growth by downregulating ZFX expression. Thus, our results implied that inhibition of SNHG20/miR-495-3p/ZFX axis may provide valuable target for GC treatment.  相似文献   

2.
3.
Gastric carcinoma (GC) is one of the most common malignancies and the third leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. In this study, we investigated the clinical significance and function of lncRNA SNHG1 in GC. SNHG1 was significantly downregulated in GC tumor tissues compared with adjacent noncancerous tissues. Overexpression of SNHG1 in BGC-823 cells remarkably inhibited not only cell proliferation, migration, invasion in vitro, but also tumorigenesis and lung metastasis in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Conversely, inhibition of SNHG1 by transfection of siRNA in AGS cells resulted in opposite phenotype changes. Mechanically, SNHG1 was found interacted with ILF3, NONO and SFPQ. RNA-seq combined with bioinformatic analysis identified a serial of downstream genes of SNHG1, including SOCS2, LOXL2, LTBP3, LTBP4. Overexpression of SNHG1 induced SOCS2 expression whereas knockdown of SNHG1 decreased SOCS2 expression. In addition, knockdown of SNHG1 promoted the activation of JAK2/STAT signaling pathway. Taken together, our data suggested that SNHG1 suppressed aggressive phenotype of GC cells and regulated SOCS2/JAK2/STAT pathway.  相似文献   

4.
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial–mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.  相似文献   

5.
6.
7.
Long non-coding RNAs (lncRNAs) are a series of non-coding RNAs that lack open reading frameworks. Accumulating evidence suggests important roles for lncRNAs in various diseases, including cancers. Recently, lncRNA H19 (H19) became a research focus due to its ectopic expression in human malignant tumors, where it functioned as an oncogene. Subsequently, H19 was confirmed to be involved in tumorigenesis and malignant progression in many tumors and had been implicated in promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. H19 also sequesters some microRNAs, facilitating a multilayer molecular regulatory mechanism. In this review, we summarize the abnormal overexpression of H19 in human cancers, which suggests wide prospects for further research into the diagnosis and treatment of cancers.  相似文献   

8.
9.
Dysregulation of long noncoding RNAs (lncRNAs) plays important roles in carcinogenesis and tumor progression, including hepatocellular carcinoma (HCC). Small nucleolar RNA host gene 3 (SNHG3) has been considered as an lncRNA to be associated with a poor prognosis in patients with HCC. Here, we reported that SNHG3 expression was significantly higher in the highly metastatic HCC (HCCLM3) cells compared with the lowly metastatic HCC cells (Hep3B and PLC/PRF/5). Furthermore, forced expression of SNHG3 promoted cell invasion, epithelial-mesenchymal transition (EMT), and sorafenib resistance in HCC. Moreover, SNHG3 overexpression induced HCC cells EMT via miR-128/CD151 cascade activation. Clinically, our data revealed that increased SNHG3 expression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that SNHG3 may be a novel therapeutic target and a biomarker for predicting response to sorafenib treatment of HCC.  相似文献   

10.
11.
Long noncoding RNAs (lncRNAs) serve critical roles in multiple human malignant tumors, including prostate cancer (PCa). Currently, the biological role of oncogenic lncRNA SNHG12 in PCa remains largely unclear. In the present study, we found that SNHG12 was highly expressed in human PCa tissues and cell lines. In addition, gain-of-function and loss-of-function studies showed that overexpression of SNHG12 promoted, while downregulation suppressed the proliferation, invasion, and migration of PCa cells in vitro. Knockdown of SNHG12 also repressed PCa xenograft tumor growth in vivo. Further in-depth mechanistic studies showed that SNHG12 might serve as a competing endogenous RNA for miR-195 in PCa cells, and miR-195 expression level was negatively associated with the expression of SNHG12 in PCa tissues. Finally, we found that the activity of Wnt/β-catenin signaling is enhanced by SNHG12 overexpression and rescued by co-transfection with miR-195 mimics in PCa cells. Collectively, the present study indicated the oncogenic function of SNHG12 in PCa and our findings might provide a new target in the treatment of PCa.  相似文献   

12.
Long non-coding RNAs (lncRNA) have been demonstrated to act as essential regulators in the development and progression of breast cancer. In our study, we found that long noncoding RNA SNHG15 was highly expressed in breast cancer tissues and cell lines. And the expression of SNHG15 was correlated with TNM stage, lymphnode metastasis and survival in breast cancer patients. SNHG15 knockdown significantly inhibited the proliferation and induced apoptosis in breast cancer cells in vitro and in vivo. Besides, SNHG15 downregulation suppressed cell migration and invasion in MCF-7 and BT-20 cells, and inhibited epithelial-mesenchymal transition (EMT). In mechanism, we found that SNHG15 acted as a competing endogenous RNA to sponge miR-211-3p, which was downregulated in breast cancers and inhibited cell proliferation and migration. Our results showed that there was a negative correlation between SNHG15 and miR-211-3p expression in breast cancer patients. Collectively, we, for the first time, revealed the functions of SNHG15 and miR-211-3p in breast cancer.  相似文献   

13.
14.
15.
Cheng  Fahui  Wang  Li  Yi  Shengen  Liu  Ganglei 《Functional & integrative genomics》2022,22(5):1043-1055
Functional & Integrative Genomics - Long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been found to be highly expressed in gastric cancer (GC). However, the study for...  相似文献   

16.
17.
Gastric cancer (GC) is one of the most frequent malignancies worldwide. Long noncoding RNAs (lncRNAs) are found to be largely implicated in various cancers, including GC. However, the function of lncRNA VCAN antisense RNA 1 (VCAN-AS1) in GC remains unclear. Herein, we observed a low level of VCAN-AS1 in normal gastric tissues through NCBI and UCSC, and that VCAN-AS1 upregulation in GC tissues was related to poor prognosis by TCGA. Furthermore, VCAN-AS1 was found markedly enhanced in GC tissues and cell lines, while its upregulation was related with clinical outcomes of GC patients. Besides this, silencing VCAN-AS1 represses cell proliferation, migration, and invasion but enhances apoptosis. More important, we discovered that VCAN-AS1 expression was negatively correlated with wild-type p53 levels in GC tissues and that p53 was negatively modulated by VCAN-AS1 in GC cells. Furthermore, p53 suppression reversed the repression of VCAN-AS1 silence on the biological processes of AGS cells. Intriguingly, we identified that both VCAN-AS1 and TP53 can bind with eIF4A3, one of the core proteins in the exon junction complex. Also, we confirmed that VCAN-AS1 negatively regulates TP53 expression by competitively binding with eIF4A3. Our findings disclosed that VCAN-AS1 contributes to GC progression through interacting with eIF4A3 to downregulate TP53 expression, indicating that VCAN-AS1 is a novel therapeutic strategy for GC treatment.  相似文献   

18.
Long noncoding RNAs (lncRNAs) regulate tumor development and progression by promoting proliferation, invasion, and metastasis. The oncogenic role of lncRNA SNHG16 in hepatocellular carcinoma (HCC) has not been revealed. LncRNA SNHG16 is upregulated in HCC and correlates with poorer prognosis. Patients with high SNHG16 expression showed lower rates of overall and disease-free survival than patients with low SNHG16 expression. Multivariate Cox regression revealed that SNHG16 expression was an independent predictor of poor overall and disease-free survival. In vitro, SNHG16 promoted HCC cell proliferation, migration, and invasion while inhibiting apoptosis; in vivo, it accelerated tumor development. Altering SNHG16 expression altered levels of miR-17-5p, which in turn modified expression of p62, which has been shown to regulate the mTOR and NF-κB pathways. Indeed, altering SNHG16 expression in HCC cells activated mTOR and NF-κB signaling. These results reveal a potential mechanism for the oncogenic role of SNHG16 in HCC. SNHG16 may therefore be a promising diagnostic marker as well as therapeutic target in HCC.  相似文献   

19.
20.
Long noncoding RNAs (lncRNA) are attractive biomarkers and therapeutic targets because of their disease- and stage-restricted expression. Small nucleolar RNA host gene 17 (SNHG17) belongs to a large family of noncoding genes hosting small RNAs, with its expression pattern and biological function not clarified in gastric cancer (GC). Thus, we conducted this study to investigate the functional significance and the underlying mechanisms of SNHG17 in GC progression. Our results showed that SNHG17 expression was upregulated in GC tissues and cells, and its high expression was significantly correlated with increased invasion depth, lymphatic metastasis, and advanced TNM stage. The expression of plasma SNHG17 was also found upregulated in patients with GC compared with healthy controls, with a moderate accuracy for diagnosis of GC (area under the receiver operating characteristic curve = 0.748; 95% CI, 0.666–0.830). Gain- and loss-of-function of SNHG17 revealed that SNHG17 promoted GC cell proliferation, cell cycle progression, invasion, and migration and inhibited apoptosis. Mechanistic investigations showed that SNHG17 was associated with polycomb repressive complex 2 and that this association was required for epigenetic repression of cyclin-dependent protein kinase inhibitors, including p15 and p57, thus contributing to the regulation of GC cell cycle and proliferation. Furthermore, rescue experiments indicated that SNHG17 functioned as an oncogene via activating enhancer of zeste homolog 2 in GC cells. Our study provides a new perspective for SNHG17 acting as a noncoding oncogene in GC tumorigenesis, and it may serve as a novel early diagnostic marker and potential target for the treatment of GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号