首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
PurposeThe aim of this study was to compare the muscle activity of patients with multidirectional instability treated in a conservative or complex manner (capsular shift with postoperative rehabilitation) and the muscle activity of stable shoulder joints before and after treatment during pull, push, and elevation of upper extremities and during overhead throw.ScopeThe study was carried out on 34 patients with multidirectional shoulder instability treated non-operatively, on 31 patients with multidirectional shoulder instability treated operatively, and on 50 healthy subjects. Signals were recorded by surface EMG from eight different muscles. The mean and standard deviation of the maximum amplitude of normalized voluntary electrical activity for the different movement types and time broadness values during overhead throw were determined for each muscle in all groups and compared with each other.ConclusionThe centralization of the glenohumeral joint and the reduction of instability is attempted to be ensured by the organism through increasing the role of rotator cuff muscles (p = 0.009) and decreasing the role of the deltoid, biceps brachii, and pectoralis maior muscles (p = 0.007). At patients after short-term and long-term conservative treatment, the maximum amplitude of normalized voluntary electrical activity of stabilizer muscles is significantly higher (p = 0.006), and that of accelerator muscles is significantly lower (p = 0.005) and the time broadness is significantly longer (p = 0.01) than that of the control group. At patients after complex treatment (open capsular shift with postoperative conservative rehabilitation) the characteristic of the muscle pattern is similar (p = 0.19) to the control group.The complex treatment resolves the labral ligamentous abnormalities by operative treatment and restores the impaired muscular control by postoperative rehabilitation, whereas the conservative treatment restores only the muscular control.  相似文献   

2.
A balance exists between the deltoid and rotator cuff contribution to arm elevation. Both cadaver and computer models have predicted an increase in deltoid muscle force with dysfunction of the rotator cuff. The goal of the present study was to verify this phenomenon in vivo by examining the effects of paralysis of the supraspinatus and infraspinatus muscles with a suprascapular nerve block on the electrical activity of seven shoulder muscles. Electromyographic data were collected before and after the administration of the block. The block resulted in a significant increase in muscle activity for all heads of the deltoid, with a higher percentage increase noted at lower elevation angles. Although the deltoid activity was reduced as the subjects recovered from the block, even low levels of cuff dysfunction were found to result in increased deltoid activity. These results suggest that even small disruptions in the normal function of some rotator cuff muscles (e.g., due to fatigue or impingement syndrome), may result in an increase in deltoid activity. It is possible that such compensation may result in higher superior loads at the glenohumeral joint, possibly increasing the risk of tendon damage.  相似文献   

3.
Imbalance of the eccentrically-activated external rotator cuff muscles versus the concentrically-activated internal rotator cuff muscles is a primary risk factor for glenohumeral joint injuries in overhead activity athletes. Nonisokinetic dynamometer based strength training studies, however, have focused exclusively on resulting concentric instead of applicable eccentric strength gains of the external rotator cuff muscles. Furthermore, previous strength training studies did not result in a reduction in glenoumeral joint muscle imbalance, thereby suggesting that currently used shoulder strength training programs do not effectively reduce the risk of shoulder injury to the overhead activity athlete. Two collegiate women tennis teams, consisting of 12 women, participated in this study throughout their preseason training. One team (n = 6) participated in a 5-week, 4 times a week, external shoulder rotator muscle strength training program next to their preseason tennis training. The other team (n = 6) participated in a comparable preseason tennis training program, but did not conduct any upper body strength training. Effects of this strength training program were evaluated by comparing pre- and posttraining data of 5 maximal eccentric external immediately followed by concentric internal contractions on a Kin-Com isokinetic dynamometer (Chattecx Corp., Hixson, Tennessee). Overall, the shoulder strength training program significantly increased eccentric external total work without significant effects on concentric internal total work, concentric internal mean peak force, or eccentric external mean peak force. In conclusion, by increasing the eccentric external total exercise capacity without a subsequent increase in the concentric internal total exercise capacity, this strength training program potentially decreases shoulder rotator muscle imbalances and the risk for shoulder injuries to overhead activity athletes.  相似文献   

4.
Current views on the function of the deltoid and rotator cuff muscles emphasize their roles in arm-raising as participants in a scapulohumeral force "couple." The acceptance of such a mechanism is based primarily on a 1944 EMG study of human shoulder muscle action. More recently, it has been suggested that shoulder joint stabilization constitutes a second and equally important function of the cuff musculature, especially in nonhuman primates which habitually use their forelimbs in overhead postural and locomotor activities. Few comparative data exist, however, on the actual recruitment patterns of these muscles in different species. In order to assess the general applicability of a scapulohumeral force couple model, and the functional significance of the differential development of the scapulohumeral musculature among primate species, we have undertaken a detailed study of shoulder muscle activity patterns in nonhuman primates employing telemetered electromyography, which permits examination of unfettered natural behaviors and locomotion. The results of our research on the chimpanzee, Pan troglodytes, on voluntary reaching and two forms of "arboreal" locomotion reveal four ways in which previous perceptions of the function of the scapulohumeral muscles must be revised: 1) the posterior deltoid is completely different in function from the middle and anterior regions of this muscle; 2) the integrity of the glenohumeral joint during suspensory postures is not maintained solely by osseoligamentous structures; 3) the function of teres minor is entirely different from that of the other rotator cuff muscles and is more similar to the posterior deltoid and teres major; and 4) each remaining member of the rotator cuff plays a distinct, and often unique, role during natural behaviors. These results clearly refute the view that the muscles of the rotator cuff act as a single functional unit in any way, and an alternative to the force couple model is proposed.  相似文献   

5.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

6.
Rotator cuff function is critical to the overhead athlete. Rotator cuff power is felt to be important in the overhead athlete during the throwing motion. Little research exists regarding torque acceleration energy (TAE) in overhead athletes. Twenty-five males were divided into 2 groups consisting of overhead athletes (pitchers) (n = 12) and nonoverhead athletes (controls) (n = 13). All participants were given a concentric velocity spectrum isokinetic test at speeds of 60 degrees (1.05 r), 180 degrees (3.16 r), and 300 degrees.s(-1) (5.26 r) to both the dominant and nondominant shoulder internal and external rotators. Significant differences were found for all internal rotator TAE scores (p = 0.000-0.016), at each of the 3 velocities, when comparing dominant to nondominant arms of both overhead athletes and nonoverhead athletes. Only 60 degrees.s(-1) (1.05 r) was found to be different during external rotation TAE testing of the overhead athletes (p = 0.027) but was not found in the control subjects. Post hoc analysis revealed no differences between dominant or nondominant TAE scores when comparisons were made between overhead athletes and controls. Results may reveal that power of the rotator cuff muscles may not be a critical component of the overhead throwing motion.  相似文献   

7.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

8.
BackgroundElectromyography (EMG) is commonly used to assess muscle activity. Although previous studies have had moderate success in predicting individual intramuscular muscle activity from surface electrodes, extensive data does not exist for the rotator cuff. This study aimed to determine how reliably surface electrodes represent rotator cuff activity during 20 maximal exertions.MethodsFive channels of EMG were recorded on the following rotator cuff muscles: supraspinatus and infraspinatus intramuscular and surface recordings, and teres minor intramuscular recordings. An additional 3 surface electrodes were placed over the upper and middle trapezius and posterior deltoid. Subjects performed ramped maximal voluntary contractions (MVCs) for each muscle, followed by 20 isometric maximal exertions. Linear least squares best fit regressions (unconstrained and constrained with zero-intercept) were used to compare: intramuscular and surface supraspinatus and infraspinatus signals, respectively, and intramuscular teres minor and surface infraspinatus signals.FindingsRelationships existed between wire and surface electrode measurements for all rotator cuff muscles: supraspinatus (r2 = 0.73); teres minor (r2 = 0.61); infraspinatus (r2 = 0.40), however prediction equations indicated large overestimations and offsets.InterpretationWhen appropriate multiplicative coefficients are considered, surface supraspinatus and infraspinatus electrodes may be used to estimate intramuscular supraspinatus and teres minor activations, respectively, in maximal exertions similar to those tested. However, until these relationships are better defined in other postures, intensities and exertion types, the use of surface electrodes to estimate indwelling rotator cuff activity is cautioned against.  相似文献   

9.
Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32–135% MVC); upper trapezius and middle deltoid while exerting upwards (73–103% and 42–78% MVC, respectively); infraspinatus while pushing (38–79% MVC); and pectoralis major activation was the highest during downwards exertions (48–84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.  相似文献   

10.
Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60 s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width.  相似文献   

11.
Shoulder muscle function has been documented based on muscle moment arms, lines of action and muscle contributions to contact force at the glenohumeral joint. At present, however, the contributions of individual muscles to shoulder joint motion have not been investigated, and the effects of shoulder and elbow joint position on shoulder muscle function are not well understood. The aims of this study were to compute the contributions of individual muscles to motion of the glenohumeral joint during abduction, and to examine the effect of elbow flexion on shoulder muscle function. A three-dimensional musculoskeletal model of the upper limb was used to determine the contributions of 18 major muscles and muscle sub-regions of the shoulder to glenohumeral joint motion during abduction. Muscle function was found to depend strongly on both shoulder and elbow joint positions. When the elbow was extended, the middle and anterior deltoid and supraspinatus were the greatest contributors to angular acceleration of the shoulder in abduction. In contrast, when the elbow was flexed at 90°, the anterior deltoid and subscapularis were the greatest contributors to joint angular acceleration in abduction. This dependence of shoulder muscle function on elbow joint position is explained by the existence of dynamic coupling in multi-joint musculoskeletal systems. The extent to which dynamic coupling affects shoulder muscle function, and therefore movement control, is determined by the structure of the inverse mass matrix, which depends on the configuration of the joints. The data provided may assist in the diagnosis of abnormal shoulder function, for example, due to muscle paralysis or in the case of full-thickness rotator cuff tears.  相似文献   

12.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

13.
14.
Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects’ maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces.  相似文献   

15.
The supraspinatus and infraspinatus muscles each have multiple sub-regions that may activate differentially in activities of daily living. Awareness of these differential demands critically informs rehabilitation of rotator cuff muscle following injury, particularly if centered on recovering and strengthening the rotator cuff to perform daily tasks. This study quantified muscle activation of supraspinatus and infraspinatus sub-regions during the performance of six activities of daily living. Twenty-three participants (mean: 22.6 ± 2.6 years) completed the following tasks: opening a jar, reaching at shoulder height, overhead reaching, pouring water from a pitcher, eating with a spoon, and combing hair. Indwelling electromyography was collected from the anterior and posterior supraspinatus and superior, middle, and inferior infraspinatus. Tasks requiring high arm elevations (e.g. reaching at shoulder and overhead height) activated anterior supraspinatus between 21 and 28% MVC. The posterior supraspinatus consistently activated between 10 and 30% MVC across all tasks. All sub-regions of infraspinatus activated highly (between 18 and 25% MVC) in tasks requiring high arm elevations in flexion. These findings may be leveraged to define effective measures to increase rotator cuff function in daily tasks.  相似文献   

16.
In patients with rotator cuff tears lost elevation moments are compensated for by increased deltoid activation. Concomitant proximal directed destabilizing forces at the glenohumeral joint are suggested to be compensated for by ‘out-of-phase’ adductor activation, preserving glenohumeral stability. Aim of this study was to demonstrate causality between moment compensating deltoid activation and stability compensating ‘out-of-phase’ adductor muscle activation.A differential arm loading with the same magnitude of forces applied at small and large moment arms relative to the glenohumeral joint was employed to excite deltoid activation, without externally affecting the force balance. Musculoskeletal modeling was applied to analyze the protocol in terms of muscle forces and glenohumeral (in)stability. The protocol was applied experimentally using electromyography (EMG) to assess muscle activation of healthy controls and cuff tear patients.Both modeling and experiments demonstrated increased deltoid activation with increased moment loading, which was higher in patients compared to controls. Model simulation of cuff tears demonstrated glenohumeral instability and related ‘out-of-phase’ adductor muscle activation which was also found experimentally in patients when compared to controls.Through differential moment loading, the assumed causal relation between increased deltoid activation and compensatory adductor muscle activation in cuff tear patients could be demonstrated. ‘Out-of-phase’ adductor activation in patients was attributed to glenohumeral instability. The moment loading protocol discerned patients with cuff tears from controls based on muscle activation.  相似文献   

17.
While fatigue of the rotator cuff demonstrably causes superior humeral head migration and concomitant risk of impingement, the relationship between specific muscular fatigue, scapular dyskinesis and impingement risk is less clear. The purpose of this study was to examine changes in scapular orientation following a simulated prone rowing fatiguing protocol that targeted the scapula stabilizing muscles while attempting to alleviate rotator cuff muscular demands. Scapular orientation and muscle activity were collected from participants before and immediately after the fatiguing task. This task fatigued both the stabilizing (upper and middle trapezius, and latissimus dorsi) and rotator cuff (supraspinatus, and infraspinatus) muscles. The upper extremity muscle fatigue pattern caused by the protocol did not elicit any significantly changes in three-dimensional scapular position with all post-fatigue changes being ?1° (p = 0.17–0.58). These results indicated that scapular reorientation is likely not the dominant mechanism of fatigue-induced subacromial impingement development. However, the substantial variability present in the kinematics prevents complete exclusion of scapular dyskinesis as a secondary causal mechanism of impingement.  相似文献   

18.
Modern shoulder prostheses permit an anatomic reconstruction of the joint, although the biomechanical advantages are not proven. The goal of this study was to investigate the relationship between position of the humeral head and function of the shoulder prosthesis (muscle efficiency). Shoulder elevation-motion and rotator cuff defects were simulated in vitro in a robot-assisted shoulder simulator. The EPOCA Custom Offset shoulder prosthesis (Argomedical AG, Cham, CH) was implanted in seven normal shoulders (77 +/- 20 kg, 55 +/- 14 years). Active elevation was simulated by hydraulic cylinders, and scapulothoratic motion by a specially programmed industrial robot. Muscle efficiency (elevation-angle/muscle-force of the deltoid muscle) was measured in anatomic (ANA), medialised (MED) and lateralised (LAT) positions of the humeral head, with or without rotator cuff muscle deficiency. Medialisation increased efficiency by 0.03 +/- 0.04 deg/N (p = 0.022), lateralisation decreased it by 0.04 +/- 0.06 deg/N (p = 0.009). Supraspinatus muscle deficiency increased the deltoid force required to elevate the arm, and thus decreased efficiency (ANA p = 0.091, MED p = 0.018, LAT p = 0.028). The data confirm that the position of the humeral head affects the mechanics of total shoulder arthroplasty. Medialisation increases efficiency of the deltoid muscle and may prove useful in compensating isolated supraspinatus muscle deficiency. Lateralisation, in contrast, leads to an unfavorable situation.  相似文献   

19.
The purpose of the study was to analyse the effect of arm-shoulder fatigue on manual performance. Ten experienced carpenters performed three standardized tasks (nailing, sawing and screwing). Electromyographic activity was recorded from six arm-shoulder muscles and the performances were video-filmed. After 45 min of standardized arm-cranking (arm-shoulder-fatiguing exercise of approximately 70%-80% maximal oxygen consumption), the tasks were repeated. The number of work movements and the time taken for each task were recorded and the quality of the work performed was compared. After the fatiguing exercise, only nailing was perceived as being harder and more mistakes were made during nailing and sawing. Movement performance was not influenced during nailing but was slightly slower during sawing and faster during screwing. However, there were increased mean EMG amplitudes in the upper trapezius and biceps muscles during nailing, in the upper trapezius, anterior deltoid and infraspinatus muscles during sawing and in the anterior deltoid muscle during screwing. Of the muscles studied the upper trapezius and anterior deltoid muscles increased their activity most after the arm-shoulder-fatiguing exercise.  相似文献   

20.
PurposeThe aim of the study was to compare the kinematic parameters and the on–off pattern of the muscles of patients with multidirectional instability (MDI) treated by physiotherapy or by capsular shift and postoperative physiotherapy before and after treatment during elevation in the scapular plane.ScopeThe study was carried out on 32 patients with MDI of the shoulder treated with physiotherapy, 19 patients with MDI of the shoulder treated by capsular shift and postoperative physiotherapy, and 25 healthy subjects. The motion of skeletal elements was modeled by the range of humeral elevation, scapulothoracic angle and glenohumeral angle, scapulothoracic (ST) and glenohumeral (GH) rhythms, and relative displacement between the rotation centers of the humerus and scapula. The muscle pattern was modeled by the on–off pattern of muscles around the shoulder, which summarizes the activity duration of the investigated muscles.ResultsThe different ST and GH rhythms and the increased relative displacement between the rotation centers of the scapula and the humerus were observed in MDI patients. The physiotherapy strengthened the rotator cuff, biceps brachii, triceps brachii, deltoid muscles, and increase the neuromuscular control of the shoulder joints. Capsular shift and physiotherapy enabled bilinear ST and GH rhythms and the normal relative displacement between the rotation centers of the scapula and humerus to be restored. After surgery and physiotherapy, the duration of muscular activity was almost normal.ConclusionThe significant alteration in shoulder kinematics observed in MDI patients cannot be restored by physiotherapy only. After the capsular shift and postoperative physiotherapy angulation at 60° of ST and GH rhythms, the relative displacement between the rotation centers of the scapula and humerus and the duration of muscular activity were restored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号