首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

2.
Vesicle-associated membrane protein-2 (VAMP-2) and cellubrevin are associated with the membrane of insulin-containing secretory granules and of gamma-aminobutyric acid (GABA)-containing synaptic-like vesicles of pancreatic beta-cells. We found that a point mutation in VAMP-2 preventing targeting to synaptic vesicles also impairs the localization on insulin-containing secretory granules, suggesting a similar requirement for vesicular targeting. Tetanus toxin (TeTx) treatment of permeabilized HIT-T15 cells leads to the proteolytic cleavage of VAMP-2 and cellubrevin and causes the inhibition of Ca2+-triggered insulin exocytosis. Transient transfection of HIT-T15 cells with VAMP-1, VAMP-2 or cellubrevin made resistant to the proteolytic action of TeTx by amino acid replacements in the cleavage site restored Ca2+-stimulated secretion. Wild-type VAMP-2, wild-type cellubrevin or a mutant of VAMP-2 resistant to TeTx but not targeted to secretory granules were unable to rescue Ca2+-evoked insulin release. The transmembrane domain and the N-terminal region of VAMP-2 were not essential for the recovery of stimulated exocytosis, but deletions preventing the binding to SNAP-25 and/or to syntaxin I rendered the protein inactive in the reconstitution assay. Mutations of putative phosphorylation sites or of negatively charged amino acids in the SNARE motif recognized by clostridial toxins had no effect on the ability of VAMP-2 to mediate Ca2+-triggered secretion. We conclude that: (i) both VAMP-2 and cellubrevin can participate in the exocytosis of insulin; (ii) the interaction of VAMP-2 with syntaxin and SNAP-25 is required for docking and/or fusion of secretory granules with the plasma membrane; and (iii) the phosphorylation of VAMP-2 is not essential for Ca2+-stimulated insulin exocytosis.  相似文献   

3.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

4.
The solubleCa2+-binding protein parvalbumin (PV) is expressed at highlevels in fast-twitch muscles of mice. Deficiency of PV in knockoutmice (PV /) slows down the speed of twitch relaxation, whilemaximum force generated during tetanic contraction is unaltered. Weobserved that PV-deficient fast-twitch muscles were significantly moreresistant to fatigue than were the wild type. Thus components involvedin Ca2+ homeostasis during the contraction-relaxation cyclewere analyzed. No upregulation of another cytosolicCa2+-binding protein was found. Mitochondria are thought toplay a physiological role during muscle relaxation and were thusanalyzed. The fractional volume of mitochondria in the fast-twitchmuscle extensor digitorum longus (EDL) was almost doubled in PV /mice, and this was reflected in an increase of cytochrome coxidase. A faster removal of intracellular Ca2+concentration ([Ca2+]i) 200-700 ms afterfast-twitch muscle stimulation observed in PV / muscles supportsthe role for mitochondria in late [Ca2+]iremoval. The present results also show a significant increase of thedensity of capillaries in EDL muscles of PV / mice. Thus alterations in the dynamics of Ca2+ transients detected infast-twitch muscles of PV / mice might be linked to the increase inmitochondria volume and capillary density, which contribute to thegreater fatigue resistance of these muscles.

  相似文献   

5.
Polyaminesare essential for early mucosal restitution that occurs by epithelialcell migration to reseal superficial wounds after injury. Normalintestinal epithelial cells are tightly bound in sheets, but they needto be rapidly disassembled during restitution. -Catenin is involvedin cell-cell adhesion, and its tyrosine phosphorylation causesdisassembly of adhesion junctions, enhancing the spreading of cells.The current study determined whether polyamines are required for thestimulation of epithelial cell migration by altering -catenintyrosine phosphorylation. Migration of intestinal epithelial cells(IEC-6 line) after wounding was associated with an increase in-catenin tyrosine phosphorylation, which decreased the bindingactivity of -catenin to -catenin. Polyamine depletion by-difluoromethylornithine reduced cytoplasmic free Ca2+concentration ([Ca2+]cyt), preventedinduction of -catenin phosphorylation, and decreased cell migration.Elevation of [Ca2+]cyt induced by theCa2+ ionophore ionomycin restored -cateninphosphorylation and promoted migration in polyamine-deficient cells.Decreased -catenin phosphorylation through the tyrosine kinaseinhibitor herbimycin-A or genistein blocked cell migration, which wasaccompanied by reorganization of cytoskeletal proteins. These resultsindicate that -catenin tyrosine phosphorylation plays a criticalrole in polyamine-dependent cell migration and that polyamines induce-catenin tyrosine phosphorylation at least partially through[Ca2+]cyt.

  相似文献   

6.
Synaptosome-associated protein of 25 kDa (SNAP-25) has beenshown to play an important role inCa2+-dependent exocytosis inneurons and endocrine cells. During fertilization, sperm-egg fusioninduces cytosolic Ca2+mobilization and subsequentlyCa2+-dependent cortical granule(CG) exocytosis in eggs. However, it is not yet clear whether SNAP-25is involved in this process. In this study, we determined theexpression and function of SNAP-25 in mouse eggs. mRNA and SNAP-25 weredetected in metaphase II (MII) mouse eggs by RT-PCR and immunoblotanalysis, respectively. Next, to determine the function of SNAP-25, weevaluated the change in CG exocytosis with a membrane dye,tetramethylammonium-1,6-diphenyl-1,3,5-hexatriene, after microinjectionof a botulinum neurotoxin A (BoNT/A), which selectively cleaves SNAP-25in MII eggs. Sperm-induced CG exocytosis was significantly inhibited inthe BoNT/A-treated eggs. The inhibition was attenuated by coinjectionof SNAP-25. These results suggest that SNAP-25 may be involved inCa2+-dependent CG exocytosisduring fertilization in mouse eggs.

  相似文献   

7.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

8.
Regulation of arterial tone by smooth muscle myosin type II   总被引:1,自引:0,他引:1  
Theinitiation of contractile force in arterial smooth muscle (SM) isbelieved to be regulated by the intracellular Ca2+concentration and SM myosin type II phosphorylation. We tested thehypothesis that SM myosin type II operates as a molecular motor proteinin electromechanical, but not in protein kinase C (PKC)-induced,contraction of small resistance-sized cerebral arteries. We utilized aSM type II myosin heavy chain (MHC) knockout mouse model and measuredarterial wall Ca2+ concentration([Ca2+]i) and the diameter of pressurizedcerebral arteries (30-100 µm) by means of digital fluorescencevideo imaging. Intravasal pressure elevation caused a graded[Ca2+]i increase and constricted cerebralarteries of neonatal wild-type mice by 20-30%. In contrast,intravasal pressure elevation caused a graded increase of[Ca2+]i without constriction in (/)MHC-deficient arteries. KCl (60 mM) induced a further[Ca2+]i increase but failed to inducevasoconstriction of (/) MHC-deficient cerebral arteries. Activationof PKC by phorbol ester (phorbol 12-myristate 13-acetate, 100 nM)induced a strong, sustained constriction of (/) MHC-deficientcerebral arteries without changing [Ca2+]i.These results demonstrate a major role for SM type II myosin in thedevelopment of myogenic tone and Ca2+-dependentconstriction of resistance-sized cerebral arteries. In contrast, thesustained contractile response did not depend on myosin andintracellular Ca2+ but instead depended on PKC. We suggestthat SM myosin type II operates as a molecular motor protein in thedevelopment of myogenic tone but not in pharmacomechanical coupling byPKC in cerebral arteries. Thus PKC-dependent phosphorylation ofcytoskeletal proteins may be responsible for sustained contraction invascular SM.

  相似文献   

9.
Neuronal7 nicotinic acetylcholine receptors (nAChRs) arepermeable to Ca2+ and other divalent cations. Wecharacterized the modulation of the pharmacological properties ofnondesensitizing mutant (L247T andS240T/L247T) 7 nAChRs bypermeant (Ca2+, Ba2+, and Sr2+) andimpermeant (Cd2+ and Zn2+) divalent cations.7 receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Extracellular permeant divalent cations increased the potency and maximal efficacy of ACh,whereas impermeant divalent cations decreased potency and maximalefficacy. The antagonist dihydro--erythroidine (DHE) was a strongpartial agonist of L247T andS240T/L247T 7 receptors in thepresence of divalent cations but was a weak partial agonist in thepresence of impermeant divalent cations. Mutation of the"intermediate ring" glutamates (E237A) inL247T 7 nAChRs eliminated Ca2+conductance but did not alter the Ca2+-dependent increasein ACh potency, suggesting that site(s) required for modulation are onthe extracellular side of the intermediate ring. The difference betweenpermeant and impermeant divalent cations suggests that sites within thepore are important for modulation by divalent cations.

  相似文献   

10.
Although bothvascular endothelial growth factor (VEGF) and fibroblast growth factor(FGF) receptors have been shown to be important in the regulation ofvascular endothelial cell growth, the roles of phospholipase C (PLC)and Ca2+ in their downstream signaling cascades are stillnot clear. We have examined the effects of VEGF and FGF on PLCphosphorylation and on changes in intracellular Ca2+ levelsin primary endothelial cells. VEGF stimulation leads to PLCactivation and increases in intracellular Ca2+, which arecorrelated with mitogen-activated protein (MAP) kinase (MAPK)activation and cell growth. Inhibition of Ca2+ increases bythe Ca2+ chelator1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM resulted in marked inhibition of MAPK activation, which wasshown to be linked to regulation of cell growth in these cells. Incontrast, FGF stimulation did not lead to PLC activation or tochanges in intracellular Ca2+ levels, although MAPKphosphorylation and stimulation of cell proliferation were observed.Neither BAPTA-AM nor the PLC inhibitor U-73122 had an effect on theseFGF-stimulated responses. These data demonstrate a direct role forPLC and Ca2+ in VEGF-regulated endothelial cell growth,whereas this signaling pathway is not linked to FGF-mediated effects inprimary endothelial cells. Thus endothelial cell-specific factorsregulate the ability of VEGF receptors and FGF receptors to couple tothis signaling pathway.

  相似文献   

11.
Theactin-binding proteins dystrophin and -actinin are members of afamily of actin-binding proteins that may link the cytoskeleton tomembrane proteins such as ion channels. Previous work demonstrated thatthe activity of Ca2+ channels can be regulated by agentsthat disrupt or stabilize the cytoskeleton. In the present study, weemployed immunohistochemical and electrophysiological techniques toinvestigate the potential regulation of cardiac L-type Ca2+channel activity by dystrophin and -actinin in cardiac myocytes andin heterologous cells. Both actin-binding proteins were found tocolocalize with the Ca2+ channel in mouse cardiac myocytesand to modulate channel function. Inactivation of the Ca2+channel in cardiac myocytes from mice lacking dystrophin(mdx mice) was reduced compared with that in wild-typemyocytes, voltage dependence of activation was shifted by 5 mV to morepositive potentials, and stimulation by the -adrenergic pathway andthe dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle,but not nonmuscle, forms of -actinin was also found to reduceinactivation. As might be predicted from a reduction ofCa2+ channel inactivation, a prolonging of the mouseelectrocardiogram QT was observed in mdx mice. These resultssuggest a combined role for dystrophin and -actinin in regulatingthe activity of the cardiac L-type Ca2+ channel and apotential mechanism for cardiac dysfunction in Duchenne and Beckermuscular dystrophies.

  相似文献   

12.
Human trabecular meshwork cell volume regulation   总被引:1,自引:0,他引:1  
The volume ofcertain subpopulations of trabecular meshwork (TM) cells may modifyoutflow resistance of aqueous humor, thereby altering intraocularpressure. This study examines the contribution thatNa+/H+, Cl/HCOexchange, and K+-Cl efflux mechanisms have onthe volume of TM cells. Volume, Cl currents, andintracellular Ca2+ activity of cultured human TM cells werestudied with calcein fluorescence, whole cell patch clamping, and fura2 fluorescence, respectively. At physiological bicarbonateconcentration, the selective Na+/H+ antiportinhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicitytriggered a regulatory volume decrease (RVD), which could be inhibitedby the Cl channel blocker5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+channel blockers Ba2+ and tetraethylammonium, and theK+-Cl symport blocker[(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism inisotonic conditions was dependent on bicarbonate; at physiologicallevels, the Na+/H+ exchange inhibitordimethylamiloride reduced cell volume, whereas at low levels theNa+-K+-2Cl symport inhibitorbumetanide had the predominant effect. Patch-clamp measurements showedthat hypotonicity activated an outwardly rectifying, NPPB-sensitiveCl channel displaying the permeability rankingCl > methylsulfonate > aspartate.2,3-Butanedione 2-monoxime antagonized actomyosin activity and bothincreased baseline [Ca2+] and abolishedswelling-activated increase in [Ca2+], but it did notaffect RVD. Results indicate that human TM cells display aCa2+-independent RVD and that volume is regulated byswelling-activated K+ and Cl channels,Na+/H+ antiports, and possiblyK+-Cl symports in addition toNa+-K+-2Cl symports.

  相似文献   

13.
Purines regulate intraocular pressure. Adenosine activatesCl channels of nonpigmented ciliary epithelial cellsfacing the aqueous humor, enhancing secretion. Tamoxifen and ATPsynergistically activate Cl channels of pigmented ciliaryepithelial (PE) cells facing the stroma, potentially reducing netsecretion. The actions of nucleotides alone on Cl channelactivity of bovine PE cells were studied by electronic cell sorting,patch clamping, and luciferin/luciferase ATP assay. Clchannels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 µM. UTP triggered ATP release. The second messengers Ca2+, prostaglandin (PG)E2,and cAMP activated Cl channels without enhancing effectsof 100 µM ATP. Buffering intracellular Ca2+activity with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acidor blocking PGE2 formation with indomethacininhibited ATP-triggered channel activation. The Rp stereoisomerof 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited proteinkinase A activity but mimicked 8-bromoadenosine 3',5'-cyclicmonophosphate. We conclude that nucleotides can act at >1 P2Yreceptor to trigger a sequential cascade involving Ca2+,PGE2, and cAMP. cAMP acts directly on Clchannels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.

  相似文献   

14.
Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase   总被引:2,自引:0,他引:2  
Ouabain binding toNa+/K+-ATPase activates Src/epidermal growthfactor receptor (EGFR) to initiate multiple signal pathways thatregulate growth. In cardiac myocytes and the intact heart, the earlyouabain-induced pathways that cause rapid activations of ERK1/2 alsoregulate intracellular Ca2+ concentration([Ca2+]i) and contractility. The goal of thisstudy was to explore the role of caveolae in these early signalingevents. Subunits of Na+/K+-ATPase were detectedby immunoblot analysis in caveolae isolated from cardiac myocytes,cardiac ventricles, kidney cell lines, and kidney outer medulla byestablished detergent-free procedures. Isolated rat cardiac caveolaecontained Src, EGFR, ERK1/2, and 20-30% of cellular contents of1- and 2-isoforms ofNa+/K+-ATPase, along with nearly all ofcellular caveolin-3. Immunofluorescence microscopy of adult cardiacmyocytes showed the presence of caveolin-3 and -isoforms inperipheral sarcolemma and T tubules and suggested their partialcolocalization. Exposure of contracting isolated rat hearts to apositive inotropic dose of ouabain and analysis of isolated cardiaccaveolae showed that ouabain caused 1) no change in totalcaveolar ERK1/2, but a two- to threefold increase in caveolarphosphorylated/activated ERK1/2; 2) no change in caveolar 1-isoform and caveolin-3; and 3) 50-60%increases in caveolar Src and 2-isoform. These findings,in conjunction with previous observations, show that components of thepathways that link Na+/K+-ATPase to ERK1/2 and[Ca2+]i are organized within cardiac caveolaemicrodomains. They also suggest that ouabain-induced recruitments ofSrc and 2-isoform to caveolae are involved in themanifestation of the positive inotropic effect of ouabain.

  相似文献   

15.
Deficiency of -sarcoglycan(-SG), a component of the dystrophin-glycoprotein complex, causescardiomyopathy and skeletal muscle dystrophy in Bio14.6 hamsters. Usingcultured myotubes prepared from skeletal muscle of normal and Bio14.6hamsters (J2N-k strain), we investigated the possibility that the-SG deficiency may lead to alterations in ionic conductances, whichmay ultimately lead to myocyte damage. In cell-attached patches (withBa2+ as the charge carrier), an ~20-pS channel wasobserved in both control and Bio14.6 myotubes. This channel is alsopermeable to K+ and Na+ but not toCl. Channel activity was increased by pressure-inducedstretch and was reduced by GdCl3 (>5 µM). The basal openprobability of this channel was fourfold higher in Bio14.6 myotubes,with longer open and shorter closed times. This was mimicked bydepolymerization of the actin cytoskeleton. In intact Bio14.6 myotubes,the unidirectional basal Ca2+ influx was enhanced comparedwith control. This Ca2+ influx was sensitive toGdCl3, signifying that stretch-activated cation channelsmay have been responsible for Ca2+ influx in Bio14.6hamster myotubes. These results suggest a possible mechanism by whichcell damage might occur in this animal model of muscular dystrophy.

  相似文献   

16.
Patch-clampexperiments were conducted to study the effects of basal lamina(basement membrane) of preovulatory chicken ovarian follicle onmembrane currents in differentiated chicken granulosa cells in ahomologous system. The membrane capacitance (measure of total membranearea) was smaller in cells cultured on intact basal lamina than that ofcontrol cells. The granulosa cells expressed outward and two inwardcurrents. A small fraction of the cells (3%) expressed only atransient fast-activating and -inactivating inward current carried byCa2+. The majority of the cells, however, expressed aslowly activating and inactivating inward current (carried byCl) that was superimposed on the transientCa2+ current. All cells expressed an outward currentcharacteristic of the delayed-rectifier K+ current. Theremoval of extracellular Ca2+ led to elimination of theslow inward Cl current, indicating that it is aCa2+-dependent Cl current. Both peakamplitude and current density of the inward Cl currentwere significantly lower in cells cultured on freshly isolated intactbasal lamina (or basal lamina stored at 4°C for 12 mo) than those ofcontrol cells; however, basal lamina had no significant effect on thedensity of the outward current. Similar to the observations made forintact basal lamina, solubilized basal lamina suppressed the inwardCl current in differentiated granulosa cells. These datashow that homologous basal lamina modulates aCa2+-dependent Cl current in differentiatedgranulosa cells. These findings provide a partial explanation for themechanisms that subserve the reported effects of basal lamina (basementmembrane) on the metabolic functions of differentiated granulosa cells.

  相似文献   

17.
Agonist-induced activation of smoothmuscle involves a rise in intracellular Ca2+ concentrationand sensitization of myosin light chain phosphorylation toCa2+. Sr2+ can enter through Ca2+channels, be sequestered and released from sarcoplasmic reticulum, andreplace Ca2+ in activation of myosin light chainphosphorylation. Sr2+ cannot replace Ca2+ infacilitation of agonist-activated Ca2+-dependentnonselective cation channels. It is not known whether Sr2+can replace Ca2+ in small G protein-mediated sensitizationof phosphorylation. To explore mechanisms involved in-receptor-activated contractions in smooth muscle, effects ofreplacing Ca2+ with Sr2+ were examined in ratportal vein. Norepinephrine (NE) at >3.0 × 107 Min the presence of Ca2+ resulted in a strong sustainedcontraction, whereas this sustained component was absent in thepresence of Sr2+; only the amplitude of phasic contractionsincreased. Pretreatment with low (~0.05 mM) free Ca2+followed by 2.5 mM Sr2+ resulted in a sustained componentof the NE response. In -escin-permeabilized preparations,phenylephrine in the presence of GTP or guanosine 5'-O-(3-thiotriphosphate) alone induced sensitization toSr2+. In conclusion, a Ca2+-regulatedmembrane/channel process is required for the sustained component of NEresponses in rat portal vein. Sensitization alone is not responsiblefor the sustained phase of the NE contraction.

  相似文献   

18.
Protein kinase C (PKC) plays animportant role in activating store-operated Ca2+ channels(SOC) in human mesangial cells (MC). The present study was performed todetermine the specific isoform(s) of conventional PKC involved inactivating SOC in MC. Fura 2 fluorescence ratiometry showed that thethapsigargin-induced Ca2+ entry (equivalent to SOC) wassignificantly inhibited by 1 µM Gö-6976 (a specific PKC andI inhibitor) and PKC antisense treatment (2.5 nM for 24-48h). However, LY-379196 (PKC inhibitor) and2,2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanoldimethyl ether(HBDDE; PKC and  inhibitor) failed to affect thapsigargin-evoked activation of SOC. Single-channel analysis in the cell-attached configuration revealed that Gö-6976 and PKC antisensesignificantly depressed thapsigargin-induced activation of SOC.However, LY-379196 and HBDDE did not affect the SOC responses. Ininside-out patches, application of purified PKC or I, but notII or , significantly rescued SOC from postexcision rundown.Western blot analysis revealed that thapsigargin evoked a decrease incytosolic expression with a corresponding increase in membraneexpression of PKC and . However, the translocation from cytosolto membranes was not detected for PKCI or II. These resultssuggest that PKC participates in the intracellular signaling pathwayfor activating SOC upon release of intracellular stores ofCa2+.

  相似文献   

19.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

20.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号