首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria isolated from radish were identified as Lactococcus lactis subsp. cremoris R and their bacteriocin was designated lactococcin R. Lactococcin R was sensitive to some proteolytic enzymes (proteinase-K, pronase-E, proteases, pepsin, α-chymotrypsin) but was resistant to trypsin, papain, catalase, lysozyme and lipase, organic solvents, or heating at 90 °C for 15, 30 and 60 min, or 121 °C for 15 min. Lactococcin R remained active after storage at −20 and −70 °C for 3 months and after exposure to a pH of 2–9. The molecular weight of lactococcin R was about 2·5 kDa. Lactococcin R was active against many food-borne pathogenic and food spoilage bacteria such as Clostridium, Staphylococcus, Listeria, Bacillus, Micrococcus, Enterococcus, Lactobacillus, Leuconostoc, Streptococcus and Pediococcus spp., but was not active against any Gram-negative bacteria. Lactococcin R was produced during log phase and reached a maximum activity (1600 AU ml−1) at early stationary phase. The highest lactococcin R production was obtained in MRS broth with 0·5% glucose, at 6·5–7·0 initial pH values, 30 °C temperature and 18–24-h incubation times. Lactococcin R adsorbed maximally to its heat-killed producing cells at pH 6–7 (95%). Crude lactococcin R at 1280 AU ml−1 was bactericidal, reducing colony counts of Listeria monocytogenes by 99·98% in 3 h. Lactococcin R should be useful as a biopreservative to prevent growth of food-borne pathogenic and food spoilage bacteria in ready-to-eat, dairy, meat, poultry and other food products. Lactococcin R differs from nisin in having a lower molecular weight, 2·5 kDa vs 3·4 kDa, and in being sensitive to pepsin and α-chymotrypsin to which nisin is resistant.  相似文献   

2.
3.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

4.
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  相似文献   

5.
E. HUOT. C. BARRENA-GONZALEZ AND H. PETITDEMANGE. 1996. Sorbitan polyoxyethylene monooleate (Tween 80) suppressed bacteriocin cell adhesion. Within the range 0–1% (v/v), there was an increase in bacteriocin production in regulated (pH 5.5 or 6.0) batch cultures with increasing Tween 80 concentration. For example, at pH 5.5 and in the presence of 1% Tween 80, bacteriocin production was about fourfold higher than in its absence. However, further increase in Tween 80 concentration did not result in a significant modification of the bacteriocin titre. It was shown that the increase was not linked to an activating effect of the surfactant on preformed enzyme, to an increase of bacteriocin availability or to a sensitization of the target cell, demonstrating that Tween 80 promoted bacteriocin production.  相似文献   

6.
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic.  相似文献   

7.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

8.
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris.  相似文献   

9.
10.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

11.
P S Tan  K M Pos    W N Konings 《Applied microbiology》1991,57(12):3593-3599
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

12.
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

13.
A peptidase from the cell wall fraction of Lactococcus lactis subsp. cremoris IMN-C12 has been purified to homogeneity by hydrophobic interaction chromatography, two steps of anion-exchange chromatography, and gel filtration. The molecular mass of the purified enzyme was estimated to be 72 kDa by gel filtration and 23 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pI of 4.0, and it has the following N-terminal sequence from the 2nd to the 17th amino acid residues: -Arg-Leu-Arg-Arg-Leu-?-Val-Pro-Gly-Glu-Ileu-Val-Glu-Glu-Leu-Leu. The peptidase is most active at pH 5.8 and at 33 degrees C with trileucine as the substrate. Reducing agents such as dithiothreitol, beta-mercaptoethanol, and cysteine strongly stimulated enzyme activity, while p-chloromercuribenzoate had an inhibitory effect. Also, metal chelators lowered the peptidase activity, which could not be restored with Ca2+ and Mg2+. The divalent cations Cu2+, Zn2+, Fe2+, and Hg2+ completely inhibited peptidase activity. The peptidase is capable of hydrolyzing tripeptides and some dipeptides, with a preference for peptides containing leucine and with the highest activity towards the tripeptides Leu-Leu-Leu, Leu-Trp-Leu, and Ala-Leu-Leu, which were hydrolyzed with Kms of 0.37, 0.18, and 0.61 mM, respectively.  相似文献   

14.
Summary One single, cytosolic aminopeptidase (AP N, EC 3.4.11.2) is found to be responsible for both leucyl-(leucylAP) and lysylaminopeptidese (lysylAP) activity detectible with whole cells of Lactococcus lactis subsp. cremoris strain HP. The existence of a cell-envelope-located form of this enzyme could be excluded. No restriction on the activity of the enzyme is imposed by the cell membrane if leucine-p-nitroanilide is used as the substrate; with lysine-p-nitroanilide the activity is highly cryptic. The enzyme has been purified and characterized. It is a metalloaminopeptidase with a molecular mass of 95 kDa. Co2+ appears to be the most potent ion to (re)activate the enzyme; Zn2+ and Mn2+ are less effective. The AP N releases the positively charged amino acids and several uncharged (including proline) from the N-terminus. Ammonium salts affect the preference of the enzyme with respect to the N-terminal residue. A preferential interaction of the ammonium ion with an essential cation binding site seems to be responsible for the inhibition of lysylAP activity.Trainee from the Laboratory School Friesland, Leeuwarden, The Netherlands Offprint requests to: F. A. Exterkate  相似文献   

15.
16.
A bacteriocin-producing strain, Lactococcus lactis QU 4, was isolated from corn. The bacteriocin, termed lactococcin Q, showed antibacterial activity only against L. lactis strains among a wide range of gram-positive indicator strains tested. Lactococcin Q was purified by acetone precipitation, cation exchange chromatography, and reverse-phase chromatography. Lactococcin Q consisted of two peptides, alpha and beta, whose molecular masses were determined to be 4,260.43 Da and 4,018.36 Da, respectively. Amino acid and DNA sequencing analyses revealed that lactococcin Q was a novel two-peptide bacteriocin, homologous to lactococcin G. Comparative study using chemically synthesized lactococcin Q (Qalpha plus Qbeta) and lactococcin G (Galpha plus Gbeta) clarified that hybrid combinations (Qalpha plus Gbeta and Galpha plus Qbeta) as well as original combinations showed antibacterial activity, although each single peptide showed no significant activity. These four pairs of lactococcin peptides acted synergistically at a 1:1 molar ratio and exhibited identical antibacterial spectra but differed in MIC. The MIC of Qalpha plus Gbeta was 32 times higher than that of Qalpha plus Qbeta, suggesting that the difference in beta peptides was important for the intensity of antibacterial activity.  相似文献   

17.
18.
Lactococcus lactis subsp. lactis A164 was isolated from Kimchi (Korean traditional fermented vegetables). The bacteriocin produced by strain A164 was active against closely related lactic acid bacteria and some food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Salmonella typhimurium. The antimicrobial spectrum was nearly identical to that of nisin. Bacteriocin activity was not destroyed by exposure to elevated temperatures at low pH values, but the activity was lost at high pH values. This bacteriocin was inactivated by pronase E and alpha, beta-chymotrypsin, but not by trypsin, pepsin, and alpha-amylase. Cultures of L. lactis subsp. lactis A164 maintained at a constant pH of 6.0 exhibited maximum production of the bacteriocin. It was purified to homogeneity by ammonium sulphate precipitation, sequential ion exchange chromatography, and ultrafiltration. Tricine-SDS-PAGE of purified bacteriocin gave the same molecular weight of 3.5 kDa as that of nisin. The gene encoding this bacteriocin was amplified by PCR with nisin gene-specific primers and sequenced. It showed identical sequences to the nisin gene. These results indicate that bacteriocin produced by Lactococcus lactis A164 is a nisin-like bacteriocin.  相似文献   

19.
20.
A gene coding for an aminopeptidase (PepC) from Lactococcus lactis subsp. cremoris AM2 was cloned by complementation of an Escherichia coli mutant lacking aminopeptidase activity. The nucleotide sequence was determined. A portion of the predicted amino acid sequence of PepC (436 amino acids) showed strong homology to the active site of cysteine proteases. No signal sequence was found, indicating an intracellular location of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号