首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Estrogen regulation of c-fos messenger ribonucleic acid   总被引:8,自引:0,他引:8  
Acute administration of 17 beta-estradiol to immature female rats elicits a rapid and striking increase in the size of the uterus. This increase in size to caused by both hypertrophy and hyperplasia in the epithelial, stromal, and myometrial cells in the uterus. Previous studies have shown that induction of mRNA for the epidermal growth factor receptor, the cellular homolog of the erb-B oncogene, occurs early during estrogen-stimulated uterine growth. We report here that estradiol causes a very rapid induction of the mRNA for the cellular oncogene c-fos in immature rat uterus. Steady state levels of c-fos mRNA reach a maximum 3 h after 17 beta-estradiol administration and slowly return to low basal levels in 15 h. Dexamethasone, progesterone, and 5 alpha-dihydrotestosterone had no effect on uterine c-fos mRNA expression. The induction of c-fos mRNA by estrogen was unaffected by the protein synthesis inhibitor puromycin but completely abolished by the RNA synthesis inhibitor actinomycin D.  相似文献   

2.
3.
4.
5.
6.
17 beta-estradiol, a long acting estrogen that is mitogenic for rat uterus in vivo, or the short acting estrogens estriol and 16 alpha-estradiol, not mitogenic on their own, were injected into adult, castrated rats and their effect on uterine gene expression and rate of DNA synthesis were compared. All three compounds increased steady-state mRNA concentration of c-fos, c-jun and c-myc proto-oncogenes to comparable levels (2 hrs after treatment), whereas only 17 beta-estradiol was found to stimulate significantly DNA synthesis (20-22 hrs later). Based on the different retention time of the tested estrogens in rat tissues, it is concluded that a short exposure to the hormone is sufficient to render uterine cells competent to progress through the cell cycle, via activation of 'immediate-early' genes expression, but that stimulation of DNA synthesis requires further changes, achieved via a prolonged exposure of the cells to the estrogenic stimulus.  相似文献   

7.
In rodent uterus, both up- and down-regulation of estrogen receptor alpha (ERalpha) messenger ribonucleic acid (mRNA) and protein levels by estradiol has been demonstrated; however, it is not known which of the uterine compartments (endometrial epithelium, stroma, myometrium) respond to estradiol with autoregulation of ERalpha. The purpose of the present study was to investigate and compare the kinetics and cell type-specific effects of estradiol on uterine ERalpha expression in immature and adult rats. Ovariectomized female rats were injected s.c. with sesame oil or estradiol-17beta. Uteri were collected and analyzed for changes in ERalpha mRNA using RNase protection assays (RPA) and in situ hybridization using radiolabeled probes specific for ERalpha. Immunohistochemical analysis was performed with a polyclonal antibody specific to ERalpha. Expression of ERalpha in the uterine epithelial cells decreased at 3 and 6 h after estradiol administration to immature and adult rats, respectively. At 24 h, ERalpha mRNA levels in the immature and mature rat uterus were higher than pretreatment levels but returned to baseline by 72 h. Pretreatment with cycloheximide did not block the 3-h repressive effect of estradiol, suggesting that the estradiol-induced decrease in ERalpha mRNA occurs independent of new protein synthesis. A decrease in ERalpha mRNA and protein was also observed in uterine epithelia at 3 and 6 h after an estradiol injection to immature and adult rats, and intensity of both the in situ hybridization signal and the immunostaining in the epithelium increased at 24 and 72 h. However, the periluminal stromal cells in the adult uterus and the majority of stromal cells of the immature uterus appeared to have increased ERalpha expression. The results indicate that down-regulation of ERalpha in the epithelia and up-regulation of stromal ERalpha play a role in early events associated with estradiol-induced cell proliferation of the uterine epithelia.  相似文献   

8.
9.
10.
The incorporation of [3H]thymidine into uterine DNA was markedly depressed within 10 to 30 minutes after intraperitoneal administration of 17beta-estradiol to immature mouse. Maximum inhibition occurred about 6 hours after the hormone was administered. Uterine DNA content and the amount of [3H]thymidine incorporated into the acid-soluble fraction was not affected during the period of hormone-induced inhibition. Moreover, the in vitro incorporation of [3H]thymidine by isolated estradiol-treated mouse uterus was blocked. In contrast to the uterus, 17beta-estradiol did not influence the incorporation of thymidine into mouse liver DNA. Evidence is presented to show that the incorporation of thymidine into uterine DNA was blocked initially by 17beta-estradiol.  相似文献   

11.
12.

Background  

Administration of a single physiological dose of 17beta-estradiol (E2:40 microg/kg) to the ovariectomized immature rat rapidly induces uterine growth and remodeling. The response is characterized by changes in endometrial stromal architecture during an inflammatory-like response that likely involves activated matrix-metalloproteinases (MMPs). While estrogen is known as an inducer of endometrial growth, its role in specific expression of MMP family members in vivo is poorly characterized. E2-induced changes in MMP-2, -3, -7, and -9 mRNA and protein expression were analyzed to survey regulation along an extended time course 0-72 hours post-treatment. Because E2 effects inflammatory-like changes that may alter MMP expression, we assessed changes in tissue levels of TNF-alpha and MCP-1, and we utilized dexamethasone (600 microg/kg) to better understand the role of inflammation on matrix remodeling.  相似文献   

13.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), two potent smooth-muscle relaxants, have been shown to cause uterine relaxation. Both CGRP- and AM-binding sites in the uterus increase during pregnancy and decrease at labor and postpartum. These changes in binding sites appear to be related to the changes in calcitonin receptor-like receptor (CRLR), receptor activity-modified protein 1 (RAMP1), RAMP2, and RAMP3 mRNA levels. It is not clear, however, whether the changes in the receptor components occur in the myometrial cells and whether the steroid hormones can directly alter these receptor components in the muscle cells. In addition, the mechanism of CGRP and AM signaling in the rat myometrium is not well understood. Therefore, we examined the mRNA expression of CGRP- and AM-receptor components, G protein Galphas, CGRP, and AM stimulation of cAMP and cGMP, and the effects of progesterone on these parameters in the Eker rat uterine myometrial smooth-muscle cell line (ELT3). ELT3 cells expressed CGRP- and AM-receptor components CRLR, RAMP1, RAMP2, and RAMP3. Expression of CRLR and RAMP1 mRNA increased with progesterone treatment and decreased with estradiol-17beta treatment. However, RAMP2 and RAMP3 mRNA expressions were unaltered by both progesterone and estradiol. Progesterone increased (P<0.05) Galphas expression and augmented CGRP- and AM-induced increases in cAMP levels. In uterine smooth-muscle cells, the antagonist to Galphas protein NF449 decreased basal as well as CGRP- and AM-stimulated cAMP levels. None of the cell treatments affected cyclic GMP production. Our results suggest that the progesterone-stimulated increases in CGRP and AM receptors, Galphas protein levels, and cAMP generation in the myometrial cells may be responsible for increased uterine relaxation sensitivity to CGRP and AM during pregnancy.  相似文献   

14.
In this report we have used in situ hybridization to localize insulin-like growth factor-I (IGF-I) expression in the uterus and have examined the effects of exogenous IGF on 3H-methyl thymidine incorporation into DNA, in uterine sections in organ culture. IGF-I mRNA was detected in all layers of the uterus but was particularly abundant in the outer longitudinal smooth muscle layer. Although IGF-I mRNA was detectable in untreated, immature rat uteri, the abundance in each layer of the uterus was increased after 17 beta-estradiol (E2) administration. A similar increase was seen in uteri from ovariectomized, hypophysectomized rats treated with E2. IGF-I when added to uterine sections in organ culture had no significant effect on DNA synthesis in the absence of E2. However, a dose-dependent increase in DNA synthesis was seen in the presence of E2. The half-maximal and maximal responses required 1 and 10 ng IGF-I, respectively. Autoradiographic localization of 3H-methyl thymidine incorporation into DNA demonstrated that the majority of the DNA synthesis occurred in the stromal layer. These findings are consistent with the hypothesis that IGF-I may function as a paracrine growth factor, mediating stromal-myometrial cell interaction.  相似文献   

15.
16.
17.
During the period around parturition, cows experience an increased susceptibility to inflammatory disorders in the mammary gland and uterus. This increased susceptibility has been correlated with a decreased functionality of neutrophils, major components in the innate immune defence. As sex steroid levels vary extensively in the period around parturition, an influence of these changes on the functionality of neutrophils has been suggested. Indeed, it has been shown that 17beta-estradiol affects some functions of bovine neutrophils. In spite of these observations, receptors for 17beta-estradiol have not yet been demonstrated in these cells. The investigation of the presence of estrogen receptors in bovine neutrophils was therefore the main objective of this study. The expression of estrogen receptors was evaluated at the protein level by flow cytometry, and at the mRNA level by polymerase chain reaction. A clear positive signal was obtained using flow cytometry for the estrogen receptor protein in bovine neutrophils. Further discrimination between the estrogen receptor subtypes alpha and beta revealed the expression of the estrogen receptor beta, whereas for the estrogen receptor alpha no reproducible positive signal could be obtained with the available antibodies. Both subtypes were found at the mRNA level. Subsequently, the estrogen receptor protein expression level in neutrophils obtained from cows in early lactation was compared with those from cows in late pregnancy. Additionally, the influence of endogenous 17beta-estradiol and progesterone levels was assessed. No difference was found for the estrogen receptor protein expression in neutrophils from cows in early lactation compared with late gestation neither were the endogenous 17beta-estradiol and progesterone levels correlated with the protein expression.  相似文献   

18.
19.
We studied the cell-type-specific and temporal expression of c-fos and c-jun protooncogenes after 17beta-estradiol (E2) stimulation in the uteri of immature 3-week-old mice neonatally exposed to diethylstilbestrol (DES), DES-mice, and the ontogenic expression of these genes in the uteri of DES-mice using immunohistochemistry and in situ hybridization. A single E2 injection induced the transient and rapid expression of c-fos mRNA and c-Fos protein in the endometrial epithelium and endothelial cells of the blood vessels in both 3-week-old vehicle-treated controls and DES-mice; a peak of mRNA expression was 2 hours after E2 injection and that of protein expression was 2 to 3 hours after the injection. The expression of c-fos mRNA and protein after E2 stimulation was lower in the DES-mice than in the control animals. There were no significant differences in the c-jun expression patterns in both experimental groups before and after the E2 injection. The E2 injection transiently down-regulated the c-jun expression in the epithelium and up-regulated it in the stroma and myometrium. The uterine epithelium of DES-mice showed much stronger c-Jun immunostaining on days 4 and 10, compared with those of controls. Neonatal DES treatment reduced c-Jun immunoreactivity in the uterine epithelium on days 4 and 10, and increased the reaction in the stroma on day 4. These results suggested that the neonatal DES treatment induces permanent changes in the c-fos expression pattern independent of the postpuberal secretion of ovarian steroids. The changes in the expression of c-fos and c-jun protooncogenes, particularly during postnatal development, are likely to play important roles in the production of uterine abnormalities in the DES-mice.  相似文献   

20.
Estrogen regulation of creatine kinase-B in the rat uterus   总被引:3,自引:0,他引:3  
Creatine kinase-B (CKB) synthesis is rapidly and specifically induced by estrogen in the uterus of the immature rat. This study indicates that this elevation is due at least in part to increases in the levels of mRNA for CKB. The stimulation of CKB mRNA levels is rapid (a 7- to 10-fold increase is detected 1-3 h after estrogen administration), but transient, as levels return to near control values by 6 h. Analysis of cDNAs to both uterine and brain CKB mRNA indicate that the same sequence is expressed in both tissues despite earlier observations of heterogeneity of the protein isolated from the two tissues. A 1.7-kilobasepair DNA fragment containing the CKB promoter and 5' flanking sequences confers estrogen sensitivity on expression of the bacterial chloramphenicol acetyl transferase gene in HeLa cells on cotransfection with an estrogen-receptor expression vector. However, the CKB promoter sequences lack any motif with convincing similarity to the currently accepted consensus estrogen response element GGTCAnnnTGACC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号