首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim to provide sensitive 31P NMR probes of intra- and extracellular pH gradients that may reach cellular acidic compartments in biological systems, new alpha-aminophosphonates were designed to meet basic requirements such as a low pK(a)s and a great chemical difference (Deltadelta(ab)) between the limiting 31P NMR chemical shifts in acidic (delta(a)) and basic (delta(b)) media. A series of six phosphorylated pyrrolidines and linear aminophosphonates were synthesized using aminophosphorylation reactions and were screened for cytotoxicity on cultured Müller cells. Among the compounds not being toxic under these conditions, three molecules were selected since they displayed the best in vitro (in several phosphate buffers and in a cytosol-like solution) properties as 31P NMR acidic pH markers, that is 3, 5 and 9, having the pK(a) values of 3.63, 5.89 and 5.66, respectively. The Deltadelta(ab) values of these pH markers were at least 3 times larger than that of standard 31P NMR probes, with a low sensitivity to ionic strength changes. From these data, it was proposed that 3, 5 and 9 could be used as reporting probes of subtle proton movements in acidic compartments, an area that still remains poorly investigated using non invasive 31P NMR methods.  相似文献   

2.
The novel phosphorylated pyrrolidine diethyl(2-methylpyrrolidin-2-yl)phosphonate (DEPMPH) was evaluated as a (31)P NMR probe of the pH changes associated with ischemia/reperfusion of rat isolated hearts and livers. In vitro titration curves indicated that DEPMPH exhibited a 4-fold larger amplitude of chemical shift variation than inorganic phosphate yielding an enhanced NMR sensitivity in the pH range of 5.0-7.5 that allowed us to assess pH variations of less than 0.1 pH units. At the non-toxic concentration of 5 mm, DEPMPH distributed into external and cytosolic compartments in both normoxic organs, as assessed by the appearance of two resonance peaks. An additional peak was observed in normoxic and ischemic livers, assigned to DEPMPH in acidic vesicles (pH 5.3-5.6). During severe myocardial ischemia, a third peak corresponding to DEPMPH located in ventricular and atrial cavities appeared (pH 6.9). Mass spectrometry and NMR analyses of perchloric extracts showed that no significant metabolism of DEPMPH occurred in the ischemic liver. Reperfusion with plain buffer resulted in a rapid washout of DEPMPH from both organs. It was concluded that the highly pH-sensitive DEPMPH could be of great interest in noninvasive ex vivo studies of pH gradients that may be involved in many pathological processes.  相似文献   

3.
The pH dependence of 31P-NMR spectra of pig cytosolic aspartate aminotransferase, containing either N-(5'-phosphopyridoxyl)-L-aspartate or pyridoxal 5'-deoxymethylenephosphonate in place of the normal coenzyme pyridoxal 5'-phosphate, has been analysed. The chemical shifts of phosphopyridoxylaspartate and of pyridoxal 5'-deoxymethylenephosphonate model Schiff base in free solution show pK values of 6.3 and 7.4, attributable to the second deprotonation step of phosphate and phosphonate, respectively. However, these compounds behave very differently when bound to apoaspartate aminotransferase. 31P-NMR spectra of these enzyme derivatives indicate that the phosph(on)ate group remains dianionic throughout the pH range 4-8.5. A clear correlation between apparent pK values obtained from spectrophotometric titration of the coenzyme chromophore and those obtained by 31P NMR indicates that the same ionisation is being reported by both methods. The data are interpreted, on the basis of available crystallographic structures of chicken mitochondrial aspartate aminotransferase, to indicate that in each case the alteration in 31P chemical shift results from a conformational change in the coenzyme 5' side chain, in which one of the structures involves a near-eclipsed pair of bonds. Such a stressed conformation produces slight alterations in bond angles around the phosphorus atom, which in turn cause the observed change in 31P chemical shift. The evidence is taken to indicate that in this case 31P NMR is a sensitive reporter of stress in enzyme-bound pyridoxal 5'-phosphate and its derivatives.  相似文献   

4.
Saponification of extracted tissue phospholipids yields a set of isolated glycerol 3-phosphoryl phospholipid polar headgroups from which semi-quantitative 31P NMR spectra can be obtained. The resonance signals from these molecules, which frequently have been reported as uncharacterized phosphate signals observed in perchloric acid extracts of tissue, can be used as an aid in the characterization of isolated phospholipids and of tissue phospholipid 31P NMR profiles. 31P NMR chemical-shift values of the resonances at pH 7 in water and relative to 85% phosphoric acid are: glycerol 3-phosphocholine (-0.13 delta), glycerol 3-phosphoethanolamine (0.42 delta), glycerol 3-phospho(monomethyl)ethanolamine (0.29 delta), glycerol 3-phospho(dimethyl)ethanolamine (0.16 delta), glycerol 3-phosphoserine (0.14 delta), glycerol 3-phosphoinositol (-0.07 delta), glycerol 3-phosphoglycerol (0.92 delta), bis(glycerol 3-phospho)glycerol (0.79 delta), serine ethanolamine phosphodiester (-0.46 delta), glycerol 3-phosphate (0.60 delta; 4.29 delta at pH 10) glycerol 2-phosphate (0.15 delta; 3.92 delta at pH 10). In addition, analysis of extracted cancer tissue phospholipid samples yielded a new and uncharacterized polar headgroup fragment with a chemical-shift value of 0.29 delta that is independent of sample pH.  相似文献   

5.
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.  相似文献   

6.
The effect of pH and cholesterol on the dimyristoylphosphatidic acid (DMPA) model membrane system has been investigated by solid state 2H- and 31P-NMR. It has been shown that each of the three protonation states of the DMPA molecule corresponds to a 31P-NMR powder pattern with characteristic delta sigma values; this implies additionally that the proton exchange on the membrane surface is slow on the NMR time scale (millisecond range). Under these conditions, the 2H-labeled lipid chains sense only one magnetic environment, indicating that the three spectra detected by 31P-NMR are related to charge-dependent local dynamics or orientations of the phosphate headgroup or both. Chain ordering in the fluid phase is also found to depend weakly on the charge at the interface. In addition, it has also been found that the first pK of the DMPA membrane is modified by changes in the lipid lateral packing (gel or fluid phases or in the presence of cholesterol) in contrast to the second pK. The incorporation of 30 mol% cholesterol affects the phosphatidic acid bilayer in a way similar to what has been reported for phosphatidylcholine/cholesterol membranes, but to an extent comparable to 10-20 mol % sterol in phosphatidylcholines. However, the orientation and molecular order parameter of cholesterol in DMPA are similar to those found in dimyristoylphosphatidylcholine.  相似文献   

7.
31P NMR has been used to study phosphoribosyldiphosphate (P-Rib-PP) over a wide range of pH values, both in the absence and presence of MgCl2. In the absence of MgCl2, the chemical shift variations of the three 31P nuclei in the molecule, over the pH range 4 to 9, were found to be largest for the terminal 1-diphosphate (1P beta) oxyanion and the 5-phosphate (5P) moiety. Apparent pK alpha values of approximately 6.1 and 6.3 were estimated for protonation of the 1P beta and 5P groups, respectively. Variations in the apparent pK alpha values associated with 1P beta and 5P oxyanions in the presence of various concentrations of MgCl2 were consistent with P-Rib-PP having two independent metal ion binding sites with different affinities for Mg2+ ions. The binding of Mg2+ reduced the apparent pK alpha of the 1P beta moiety by approximately 1.6 units and the apparent pK alpha of the 5P group by approximately 0.7 unit. This behavior is analogous to the situation reported for the terminal phosphooxyanion of ADP and observed for the phosphate group of ribose 5-phosphate, respectively. In the presence of an equimolar concentration of added MgCl2, the 1P alpha and 1P beta resonances of P-Rib-PP were shifted downfield and the 31P-31P coupling constant was decreased. Changes in both these parameters were very similar to those reported for the MgADP- complex. The observed chemical shifts and spin-spin coupling constants suggest that the diphosphate and monophosphate moieties of P-Rib-PP act as independent binding sites for Mg2+ in a manner similar to the phosphooxyanion groups of ADP and ribose 5-phosphate, respectively.  相似文献   

8.
G Krishnamoorthy 《Biochemistry》1986,25(21):6666-6671
Application of a temperature jump (2.5 degrees C) to a suspension of liposomes, having phosphate (delta pK/delta T approximately 0.005) as the internal buffer and tris(hydroxymethyl)aminomethane (delta pK/delta T approximately 0.031) as the external buffer, created a delta pH (pHin - pHout) of positive sign in ca. 5 microseconds. Decay of this delta pH was monitored by using the fluorescent pH indicator 8-hydroxy-1,3,6-pyrenetrisulfonic acid entrapped inside the liposome. This technique is useful to study transmembrane proton movement in the time range 5 microseconds-10 s at physiological pH values. The kinetics of proton transport aided by ion carriers such as nigericin, monensin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and valinomycin were studied by our method. The electrogenic nature of transport by CCCP and valinomycin and electroneutral ion transport by nigericin and monensin were shown. From the kinetics of proton transport aided by gramicidin, the time-averaged single-channel conductance of gramicidin channels was estimated to be (2.1 +/- 0.5) X 10(-16) S for H+ at pH 7.5.  相似文献   

9.
The oxidation-reduction midpoint potentials, Em, of the FAD and active site disulfide couples of Escherichia coli thioredoxin reductase have been determined from pH 5.5 to 8.5. The FAD and disulfide couples have similar Em values and thus a linked equilibrium of four microscopic enzyme oxidation-reduction states exists. The binding of phenylmercuric acetate to one enzyme form could be monitored which allowed solving the four microscopic Em values. The Em values at pH 7.0 and 12 degrees C of the four couples of thioredoxin reductase are: (S)2-enzyme-FAD/FADH2 = -0.243 V, (SH)2-enzyme-FAD/FADH2 = -0.260 V, (FAD)-enzyme-(S)2/(SH)2 = -0.254 V, and (FADH2)-enzyme-(S)2/(SH)2 = -0.271 V. Thus, at pH 7.0, the FAD and disulfide moieties have a 0.017-V negative interaction and Em values which are different by 0.011 V. The delta Em/delta pH of the FAD couples E2m and E3m are about 0.060 V/pH throughout the pH range studied, showing an approximately 2-proton stoichiometry of reduction of the enzyme FAD. The delta Em/delta pH of the disulfide couples E1m and E4m are about 0.052 V/pH from pH 5.5 to 8.5, showing an apparently nonintegral proton stoichiometry of reduction of 1.8 in this pH range. This proton stoichiometry suggests the presence of a base with an ionization behavior that is linked to the oxidation-reduction state of the disulfide. A novel method is presented for determining the pK values on oxidized and reduced enzyme which agrees with the less accurate classical method. The proton stoichiometry results are consistent with the presence of a thiol-base ion pair in which the pK of the base is elevated from 7.6 in disulfide containing enzyme to greater than 8.5 upon forming an ion pair with a thiol anion of pK 7.0 generated upon reduction of the disulfide. The fluorescence of the FAD in thioredoxin reductase decreases as the pH is lowered with a pK of 7.0, direct evidence for a base near the FAD probably distinct from the base interacting with the dithiol.  相似文献   

10.
1. The chemical shifts (delta) of the phosphates of 2,3-diphosphoglycerate and adenosine triphosphate (ATP) were determined by phosphorus nuclear magnetic resonance (31P NMR) spectroscopy and were found to be displaced downfield following the addition of hemoglobin (3 mM) to a solution of either diphosphoglycerate (5 mM) or ATP (1 mM). 2. The binding of these compounds to hemoglobin was also determined by membrane ultrafiltration. A direct relationship was observed between the change in chemical shift ((delta delta) of the 2-P and 3-P of diphosphoglycerate and the percent diphosphoglycerate bound, when the latter was varied by altering pH, oxygenation state, or total diphosphoglycerate concentration. 3. In comparable studies with ATP binding, a linear relationship between the delta delta values of the gamma-, beta-, and alpha-P of ATP and the percent of ATP bound was not observed when the data from all of the experiments were plotted. NMR signals were not detectible in deoxyhemoglobin solutions containing 1 mM ATP but were seen in solutions containing 3.8 mM ATP. 4. The results indicate that 31P NMR spectroscopy is a promising tool for investigating organic phosphate interactions with hemoglobin.  相似文献   

11.
To explore electrostatic interactions in ubiquitin, pK(a) values have been determined by NMR for all 12 carboxyl groups in wild-type ubiquitin and in variants where single lysines have been replaced by neutral residues. Aspartate pK(a) values in ubiquitin range from 3.1 to 3.8 and are generally less than model compound values. Most aspartate pK(a) values are within 0.2 pH unit of those predicted with a simple Tanford-Kirkwood model. Glutamate pK(a) values range from 3.8 to 4.5, close to model compound values and differing by 0.1-0.8 pH unit from calculated values. To determine the role of positive charges in modulating carboxyl pK(a) values, we mutated lysines at positions 11, 29, and 33 to glutamine and threonine. NMR studies with these six single-site mutants reveal significant interactions of Lys 11 and Lys 29 with Glu 34 and Asp 21, respectively: pK(a) values for Glu 34 and Asp 21 increase by approximately 0.5-0.8 pH unit, similar to predicted values, when the lysines are replaced by neutral residues. In contrast, the predicted interaction between Lys 33 and Glu 34 is not observed experimentally. In some instances, substitution of lysine by glutamine and threonine did not lead to the same changes in carboxyl pK(a) values. These may reflect new short-range interactions between the mutated residues and the carboxyl groups. Carboxyl pK(a) shifts > 0.5 pH unit result from mutations at groups that are <5 A from the carboxyl group. No interactions are observed at >10 A.  相似文献   

12.
Dennison C  Lawler AT 《Biochemistry》2001,40(10):3158-3166
The effect of pH on Cu(I) and Cu(II) umecyanin (UCu), a phytocyanin obtained from horseradish roots, has been studied by electronic and NMR spectroscopy and using direct electrochemical measurements. A pK(a) value of approximately 9.5-9.8 is observed for the alkaline transition in UCu(II), and this leads to a slightly altered active site structure, as indicated by the changes in the paramagnetic 1H NMR spectrum. Electrochemical studies show that the pK(a) value for this transition in UCu(I) is 9.9. The alkaline transition is caused by the deprotonation of a surface lysine residue, with Lys96 being the most likely candidate. The isotropically shifted resonances in the (1)H NMR spectrum of UCu(II) also shift upon lowering the pH (pK(a) 5.8), and this can be assigned to the protonation of the surface (noncoordinating) His65 residue. This histidine titrates in UCu(I) with a pK(a) of 6.3. The reduction potential of the protein in this range is also dependent on pH, and pK(a) values matching those from NMR, for the two oxidation states of the protein, are obtained. There is no evidence for either of the active site histidines (His44 and His90) titrating in UCu(I) in the pH range studied (down to pH 3.7). Also highlighted in these studies are the remarkable active site similarities between umecyanin and the other phytocyanins which possess an axial Gln ligand.  相似文献   

13.
M T Mas  R F Colman 《Biochemistry》1984,23(8):1675-1683
The interaction of the 2'-phosphate-containing nucleotides (NADP+, NADPH, 2'-phosphoadenosine 5'-diphosphoribose, and adenosine 2',5'-bisphosphate) with NADP+ -specific isocitrate dehydrogenase was studied by using 31P NMR spectroscopy. The separate resonances corresponding to free and bound nucleotides, characteristic for slow exchange of nuclei on the NMR time scale, were observed in the spectra of the enzyme (obtained in the presence of excess ligand) with NADP+ and NADPH in the absence and presence of Mg2+ and with 2'-phosphoadenosine 5'-diphosphoribose in the absence of metal or in the presence of the substrate magnesium isocitrate. The position of the 31P resonance of the bound 2'-phosphate group in these spectra is invariant (delta = 6) in the pH range 5-8, indicating that the pK of this group is much lower in the complexes with the enzyme than that (pK = 6.13) in the free nucleotides. The additional downfield shift of this resonance by 1.8 ppm beyond that (delta = 4.22) of the dianionic form of the 2'-phosphate in free nucleotides suggests interaction with a positively charged group(s) and/or distortion of P-O-P angles as the result of binding to the enzyme. A single resonance of 2'-phosphate was observed in the spectrum of the enzyme complex with 2'-phosphoadenosine 5'-diphosphoribose in the presence of Mg2+, with the chemical shift dependent on the nucleotide to enzyme ratio, characteristic for the fast exchange situation. Addition of metal does not perturb the environment of the 2'-phosphate in the complexes of NADP+ and NADPH with isocitrate dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The P---C bond splitting reaction of Ru(OAc)2(Binap), containing 13C=O-enriched acetate, with 2 equiv. of triflic acid at 80 °C, has been studied. NMR spectroscopy (and specifically 13C NMR data) reveal that acetic anhydride and water are produced, thus explaining the end product, which may be thought of as developing due to water adding across the P---C bond. An intermediate 10 derived from attack of acetate on a P-atom is recognised. Complex 10 is shown to contain a cyclic five-membered ring, Ru---{(P---OC(Me)(=O)} fragment which develops via acetate attack on a P-atom. Crystal structures for two Ru(OAc)2(MeO---Biphep) derivatives are reported.  相似文献   

15.
The relationship between the steady-state sodium gradient (delta pNa) and the protonmotive force developed by endogenously respiring Escherichia coli cells has been studied quantitatively, using 23Na NMR for measurement of intracellular and extracellular sodium concentrations, 31P NMR for measurement of intracellular and extracellular pH, and tetraphenylphosphonium distribution for measurement of membrane potential. At constant protonmotive force, the sodium concentration gradient was independent of extracellular concentrations over the measured range of 4-285 mM, indicating that intracellular sodium concentration is not regulated. The magnitude of delta pNa was measured as a function of the composition and magnitude of the protonmotive force. At external pH values below 7.2, delta pNa was parallel to delta pH but showed no simple relationship to the membrane potential; above pH 7.2 the parallel relationship began to diverge, with delta pH continuing to decrease but delta pNa starting to level off or increase. Although plots of delta pNa versus delta pH had slopes of close to 1, the value of delta pNa consistently exceeded that of delta pH by approximately 0.4 units, indicating a partially electrogenic character to the putative H+/Na+ antiport. The apparent stoichiometry was 1.13 +/- 0.01 at external pH below 7.2. The possible significance of this nonintegral stoichiometry is discussed according to a model in which two distinct integral stoichiometries (possibly 1H+/1Na+ and 2H+/1Na+) are available with some relative probability; the model predicts futile cycling of sodium ions and a dissipative proton current. In the course of this study, we discovered that the magnitude of the pH gradient developed by the cells was osmolarity-dependent, yielding steady-state intracellular pH values that varied from 7.1 at 100 mosm to 7.7 at 800 mosm.  相似文献   

16.
The experimental validation refers to the computer program reported in the companion paper, able to simulate the course of pH, buffering power (beta) and ionic strength (I) of polyprotic buffers (either singly or in a mixture) titrated over any pH range. With simple oligoamines (up to five nitrogens) it is shown that it is impossible to generate linear pH gradients in the pH 4-10 interval, unless they are mixed in appropriate ratios. With pentaethylene hexamine, when used alone, it is possible to create a linear pH 4-10 interval, provided the molarity ratios are altered in the two chambers of the gradient mixer. The general rule operating for generation of linear pH intervals is constancy of buffering power throughout the titration. Local minima of beta produce steeper gradients, while local beta maxima flatten it. The ideal delta pK to arrange for linear pH gradients during titration is centred around 1 pH unit; thus polyprotic buffers with very large delta pK values (e.g., EDTA) appear to be totally useless for this purpose. The present computing algorithms should be quite efficient for optimizing existing buffer recipes for chromatofocusing or ampholyte displacement chromatography or for creating new, properly tailored, buffer mixtures.  相似文献   

17.
2H and 31P NMR techniques were used to study the effects on acyl chain order and lipid organization of the well-characterized pore-forming domain of colicin A (20-kDa thermolytic fragment of colicin A) upon insertion in model membrane systems derived from the Escherichia coli fatty acid auxotrophic strain K 1059, which was grown in the presence of [11,11-2H2]-labeled oleic acid. Addition of the protein to dispersions of the E. coli total lipid extract, in a 1/70 molar ratio of peptide to lipids, resulted in a large pH-dependent decrease in quadrupolar splitting of the 2H NMR spectra. The decrease of the quadrupolar splitting obtained at the various pH values was correlated with the pH dependence of the insertion of the protein in monolayer films using the same E. coli lipid extracts. The pK governing the perturbing effects on the order of the fatty acyl chains was around 5, in agreement with the values of the pH-dependent conformational changes of the pore-forming domain of colicin A required for membrane insertion as reported by van der Goot et al. [(1991) Nature 354, 408-410]. 31P NMR measurements show that the bilayer organization remains intact upon addition of the protein to dispersions of lipid extract. Surprisingly, 31P NMR measurements as a function of temperature indicate that the pore-forming domain of colicin A even stabilizes bilayer lipid structure at pH 4. Both the large effect of the protein on acyl chain order and its bilayer-stabilizing activity are indicative of a surface localization of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
31P NMR spectra of the cytosolic chicken aspartate aminotransferase have been recorded at 161.7 MHz in the pH range of 5.7 to 8.2. The 31P chemical shift was found to be pH-dependent with a pK of 6.85; difference in the chemical shift at pH 5.7 and 8.2 is only 0.35 ppm. The monoanion-dianion transition of 5'-phosphate group of a model Schiff base of pyridoxal phosphate with 2-aminobutanol in methanol is accompanied by a change in 31P chemical shift of 5.2 ppm. It is inferred that the phosphate group of the protein--bound coenzyme is in dianionic form throughout the investigated pH range; the small pH-dependent change of chemical shift may be due to a protein conformational change that affects O-P-O bond angle. In the presence of the 0.1 M succinate, 31P chemical shift of the enzyme remains constant in the pH range of 5.0 to 8.3.  相似文献   

19.
1. Monovalent-cation [(CH3)4N+, K(I), Na(I)] ATP, 1 mM in nucleotide, in aqueous solutions at pH 7.2, 24 degrees C, generates 2 different 31P NMR spectra, depending upon the salt content of the solution. At salt concentrations below 10 mM, the 31P NMR signals are chemically-shifted upfield (Na salt: alpha, -11.44 delta; beta, -22.91 delta; gamma, -8.36 delta) and the beta- and gamma-groups are broadened (at half-height: alpha, 3.5 Hz; beta, 9.6 Hz; gamma, 69 Hz). Above 10 mM salt, the signals are shifted downfield and are narrow (Na salt: alpha, -11.09 delta, 1.9 Hz; beta, -21.75 delta, 3.3 Hz; gamma, -6.30 delta, 3.9 Hz). 2. The Na-Mg-ATP complex, corresponding to the composition Na6Mg1ATP2, yields a single set of 31P resonances at concentrations of nucleotide of 100 mM, that upon dilution to 0.2 mM, resolve into 2 sets of ATP resonances characterized by low-field and high-field beta- and gamma-group resonance pairs. This set of ATP resonances, in contrast to the resonance set at 100 mM ATP, are broad (100 mM in ATP: alpha, -10.7 delta, 3.7 Hz; beta, -20.1 delta, 15 Hz; gamma, -5.7 delta, 7.3 Hz. 0.2 mM in ATP: alpha, -10.7 delta, 47 Hz; beta, -18.8 and -21.6 delta, 316 and 274 Hz; gamma, -5.5 and -8.7 delta, 460 and 374 Hz). 3. This new data, in combination with data derived from a survey of metal-ion-ATP studies, are interpreted in terms of ATP dimers, incorporating 2 molecules of ATP and 2 metal cations, that exist in water under the physiological conditions of neutral pH, high salt content [135 mM K(I)] and ATP concentrations in the range of 3 mM. 4. A compilation of 31P in vivo and ex vivo data compared to a reference Mg-ATP chemical shift vs Mg/ATP ratio plot indicates that ATP is not fully Mg-saturated in living systems and that 41% exists as the Mg(ATP)2 complex.  相似文献   

20.
High heat of enzymatic hydrolysis of triphosphoinositide phosphate bonds and of high-energy phosphates is observed using microcalorimetry. Heats of hydrolysis of triphosphoinositide, ADP and ATP sharply increase with increasing pH values from 6.6 to 7.4. Heat of hydrolysis of diphosphoinositide correlates with that of low-energy phosphates, pK4 and pK5 values for triphosphoinositide are found to be 7.4 and 9.3 respectively by means of potentiometric titration deltaGo' values for diphosphoinositide and triphosphoinositide are -3.5 and -7.1 kcal/mole respectively, taking into consideration the correction for heat neutralization-ionization during hydrolysis. Rapid triphosphoinositide hydrolysis takes place in 1% aqueous pyridine solution at 100 degrees C. In contrast to diphosphoinositide and monophosphoinositide, infrared spectra of triphosphoinositide have an additional absorption band at 930 cm(-1). 31P NMR method has revealed the presence of one diester and two monoester groups in the molecule of triphosphoinositide. The differences described between triphosphoinositide and other compounds with phosphomonoester groups are suggested to be due to electrostatic nonbounded interaction of vicinal diequatorial phosphate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号