首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic DNA replication requires the assembly of multiprotein pre-replication complexes (pre-RCs) at chromosomal origins of DNA replication. Here we describe the interactions of highly purified Schizosaccharomyces pombe pre-RC components, SpORC, SpCdc18, and SpCdt1, with each other and with ars1 origin DNA. We show that SpORC binds DNA in at least two steps. The first step likely involves electrostatic interactions between the AT-hook motifs of SpOrc4 and AT tracts in ars1 DNA and results in the formation of a salt-sensitive complex. In the second step, the salt-sensitive complex is slowly converted to a salt-stable complex that involves additional interactions between SpORC and DNA. Binding of SpORC to ars1 DNA is facilitated by negative supercoiling and is accompanied by changes in DNA topology, suggesting that SpORC-DNA complexes contain underwound or negatively writhed DNA. Purified human origin recognition complex (ORC) induces similar topological changes in origin DNA, indicating that this property of ORC is conserved in eukaryotic evolution and plays an important role in ORC function. We also show that SpCdc18 and SpCdt1 form a binary complex that has greater affinity for DNA than either protein alone. In addition, both proteins contribute significantly to the stability of the initial SpORC-DNA complex and enhance the SpORC-dependent topology changes in origin DNA. Thus, the formation of stable protein-DNA complexes at S. pombe origins of replication involves binary interactions among all three proteins, as well as interactions of both SpORC and SpCdt1-SpCdc18 with origin DNA. These findings demonstrate that SpORC is not the sole determinant of origin recognition.  相似文献   

2.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

3.
We have developed a genomic footprinting protocol which allows us to examine protein-DNA interactions at single copy chromosomal origins of DNA replication in the budding yeast Saccharomyces cerevisiae. We show that active replication origins oscillate between two chromatin states during the cell cycle: an origin recognition complex (ORC)-dependent post-replicative state and a Cdc6p-dependent pre-replicative state. Furthermore, we show that both post- and pre-replicative complexes can form efficiently on closely apposed replicators. Surprisingly, ARS301 which is active as an origin on plasmids but not in its normal chromosomal location, forms ORC- and Cdc6p-dependent complexes in both its active and inactive contexts. Thus, although ORC and Cdc6p are essential for initiation, their binding is not sufficient to dictate origin use.  相似文献   

4.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

5.
The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.  相似文献   

6.
ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA   总被引:8,自引:0,他引:8  
Binding of Cdc6 to the origin recognition complex (ORC) is a key step in the assembly of a pre-replication complex (pre-RC) at origins of DNA replication. ORC recognizes specific origin DNA sequences in an ATP-dependent manner. Here we demonstrate cooperative binding of Saccharomyces cerevisiae Cdc6 to ORC on DNA in an ATP-dependent manner, which induces a change in the pattern of origin binding that requires the Orc1 ATPase. The reaction is blocked by specific origin mutations that do not interfere with the interaction between ORC and DNA. Single-particle reconstruction of electron microscopic images shows that the ORC-Cdc6 complex forms a ring-shaped structure with dimensions similar to those of the ring-shaped MCM helicase. The ORC-Cdc6 structure is predicted to contain six AAA+ subunits, analogous to other ATP-dependent protein machines. We suggest that Cdc6 and origin DNA activate a molecular switch in ORC that contributes to pre-RC assembly.  相似文献   

7.
8.
Kong D  DePamphilis ML 《The EMBO journal》2002,21(20):5567-5576
Previous studies have shown that the Schizo saccharomyces pombe Orc4 subunit is solely responsible for in vitro binding of origin recognition complex (ORC) to specific AT-rich sites within S.pombe replication origins. Using ARS3001, a S.pombe replication origin consisting of four genetically required sites, we show that, in situ as well as in vitro, Orc4 binds strongly to the Delta3 site, weakly to the Delta6 site and not at all to the remaining sequences. In situ, the footprint over Delta3 is extended during G(1) phase, but only when Cdc18 is present and Mcm proteins are bound to chromatin. Moreover, this footprint extends into the adjacent Delta2 site, where leading strand DNA synthesis begins. Therefore, we conclude that ARS3001 consists of a single primary ORC binding site that assembles a pre-replication complex and initiates DNA synthesis, plus an additional novel origin element (Delta9) that neither binds ORC nor functions as a centromere, but does bind an as yet unidentified protein throughout the cell cycle. Schizosaccharomyces pombe may be an appropriate paradigm for the complex origins found in the metazoa.  相似文献   

9.
The Saccharomyces cerevisiae Orc2 protein is a subunit of the origin recognition complex, ORC, which binds in a sequence-specific manner to yeast origins of DNA replication. With screens for orc2-1 synthetic lethal mutations and Orc2p two-hybrid interactors, a novel Orc2p-associated factor (Oaf1p) was identified. OAF1 is essential, its gene product is localized to the nucleus, and an oaf1 temperature-sensitive mutant arrests as large budded cells with a single nucleus. The mutant oaf1-2, isolated in the synthetic lethal screen, loses plasmids containing a single origin of DNA replication at a high rate, but it maintains plasmids carrying multiple potential origins of DNA replication. In addition, the OAF1 gene product tagged with the hemagglutinin antigen epitope binds to a DNA affinity column containing covalently linked tandem repeats of an essential origin element. These results suggest a role for OAFI in the initiation of DNA replication. Mutant alleles of cdc7 and cdc14 were also isolated in the orc2-1 synthetic lethal screen. Cdc7p, like Oaf1p, also interacts with Orc2p in two-hybrid assays.  相似文献   

10.
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.  相似文献   

11.
Origins and complexes: the initiation of DNA replication   总被引:6,自引:0,他引:6  
Eukaryotic DNA is organized for replication as multiple replicons. DNA synthesis in each replicon is initiated at an origin of replication. In both budding yeast, Saccharomyces cerevisiae and fission yeast, Schizosaccharomyces pombe, origins contain specific sequences that are essential for initiation, although these differ significantly between the two yeasts with those of S. pombe being more complex then those of S. cerevisiae. However, it is not yet clear whether the replication origins of plants contain specific essential sequences or whether origin sites are determined by features of chromatin structure. In all eukaryotes there are several biochemical events that must take place before initiation can occur. These are the marking of the origins by the origin recognition complex (ORC), the loading onto the origins, in a series of steps, of origin activation factors including the MCM proteins, and the initial denaturation of the double helix to form a replication "bubble". Only then can the enzymes that actually initiate replication, primase and DNA polymerase-alpha, gain access to the template. In many cells this complex series of events occurs only once per cell cycle, ensuring that DNA is not re-replicated within one cycle. However, regulated re-replication of DNA within one cell cycle (DNA endoreduplication) is relatively common in plants, indicating that the "once-per-cycle" controls can be overridden.  相似文献   

12.
Takara TJ  Bell SP 《The EMBO journal》2011,30(24):4885-4896
Eukaryotic origins of replication are selected by loading a head-to-head double hexamer of the Mcm2-7 replicative helicase around origin DNA. Cdt1 plays an essential but transient role during this event; however, its mechanism of action is unknown. Through analysis of Cdt1 mutations, we demonstrate that Cdt1 performs multiple functions during helicase loading. The C-terminus of Cdt1 binds Mcm2-7, and this interaction is required for efficient origin recruitment of both proteins. We show that origin recognition complex (ORC) and Cdc6 recruit multiple Cdt1 molecules to the origin during helicase loading, and disruption of this multi-Cdt1 intermediate prevents helicase loading. Although dispensable for loading Mcm2-7 double hexamers that are topologically linked to DNA, the essential N-terminal domain of Cdt1 is required to load Mcm2-7 complexes that are competent for association with the Cdc45 and GINS helicase-activating proteins and replication initiation. Our data support a model in which origin-bound ORC and Cdc6 recruit two Cdt1 molecules to initiate double-hexamer formation prior to helicase loading and demonstrate that Cdt1 influences the replication competence of loaded Mcm2-7 helicases.  相似文献   

13.
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.  相似文献   

14.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

15.
Eukaryotic origin recognition complexes (ORCs) play pivotal roles in the initiation of chromosomal DNA replication. ORC from the yeast, Saccharomyces cerevisiae, recognizes and binds replication origins in the late G1 phase and the binding has profound implications in the progression of the cell cycle to the S-phase. Therefore, we have quantitatively analyzed the mechanism of recognition and interaction of the yeast ORC with various elements of a yeast origin of DNA replication, the autonomously replicating sequence 1 (ARS1). ORC bound all four individual A and B elements of ARS1 with reasonably high affinities. However, the highest affinity binding was observed with a DNA sequence containing both the A and B1 elements. In addition, ATP and ADP significantly modulated the binding of ORC to the combined elements as well as modulating the binding of ORC to the element A alone or in combination with the B1 element. However, binding of ORC to individual B1, B2, and B3 elements was not responsive to nucleotides. Thus, the consensus ARS sequence in element A appeared to play a pivotal role in the ATP-dependent binding of ORC to ARS1 and likely in other ARSs or origins of DNA replication.  相似文献   

16.
The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.  相似文献   

17.
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.  相似文献   

18.
19.
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.  相似文献   

20.
Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G(2) and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号