首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Free radical research》2013,47(4):374-382
Abstract

Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.  相似文献   

3.
The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2′7′-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the respiratory burst, was also used. Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.  相似文献   

4.
5.
6.
Objective: We have previously shown 1α,25‐dihydroxyvitamin D3 [1α,25‐(OH)2D3] to inhibit mitochondrial uncoupling protein 2 (UCP2) expression in adipocytes and that in vivo suppression of calcitriol levels with calcium‐rich diets increases UCP2 expression. Because UCP2 plays a significant role in the clearance of reactive oxygen species (ROS), we studied the effect of calcitriol on ROS production and ROS‐induced adipocyte proliferation. Research Methods and Procedures: ROS production in human and murine adipocytes was stimulated by high glucose (30 mM) or H2O2 (100 nM). Results: Both approaches resulted in increased ROS production by 27% to 100% (p < 0.05) and increased cell proliferation by 15% to 39% (p < 0.03). These effects were augmented by the addition of mitochondrial uncoupling inhibitor guanosine 5′‐diphosphate (GDP; 100 μM) or 1α,25‐(OH)2D3 (10 nM) and attenuated by UCP2 overexpression, suggesting that inhibition of mitochondrial uncoupling suppresses clearance of ROS and increases adipocyte proliferation. The addition of α ± tocopherol (1 μM) inhibited cell proliferation in adipocytes treated with either H2O2 or high glucose, indicating that ROS plays a major role in the regulation of cell proliferation in adipocytes. Moreover, stimulation of ROS with high glucose and H2O2 resulted in a 2‐ to 5‐fold increase in adipocyte intracellular calcium ([Ca2+]i; p < 0.001), and calcium channel antagonism (nifedipine, 10 μM) suppressed ROS induced calcium influx and cell proliferation, indicating that [Ca2+]i may also regulate ROS production and exert a mitogenic effect in adipocytes. Discussion: These data support a role of 1α,25‐(OH)2D3, UCP2, and [Ca2+]i in the regulation of adipocyte ROS production.  相似文献   

7.
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase.  相似文献   

8.
The plant-derived phenolic compounds genistein and oleuropein are known to exhibit several biological properties, many of which may result from their antioxidant and free radical scavenger activity. In this paper we report the results of a complex study of antioxidant activity of genistein and oleuropein, using electron spin resonance (ESR), chemiluminescence, fluorescence and spectrophotometric techniques. Different reaction systems were applied to study the inhibitory effect of the phenolic compounds studied: (a) the potassium superoxide/18-crown-6 dissolved in DMSO system, which generates superoxide radical (O(2).(-)) and hydrogen peroxide (H(2)O(2)); (b) the Co(II)-EDTA-H(2)O(2) system (the Fenton-like reaction), which generates hydroxyl radical (HO.); (c) 2,2'-azobis(2-amidino-propane)dichloride (AAPH) as the peroxyl radical (ROO.) generator, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical test. Results showed that genistein and oleuropein decreased the chemiluminescence sum from the O(2).(-) generating system, an inhibitory effect that was dependent on their concentration. These compounds also reacted with ROO radicals and they showed activity about two-fold greater than the standard Trolox. The antioxidant effects were studied at different concentrations and reflected in protection against the fluorescence decay of beta-phycoerythrin (beta-PE), due to ROO. attack on this protein. Using the Fenton-like reaction and the spin trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the phenolic compounds examined were found to inhibit DMPO-.OH radical formation in the range 10-90% at concentrations of 0.1 mmol/L to 2 mmol/L. Furthermore, these compounds also inhibited HO.-dependent deoxyribose degradation; about 20% and 60% inhibitions were observed in the presence of 0.5 mmol/L genistein and oleuropein, respectively. It was also demonstrated that genistein had a weaker DPPH radical scavenging activity than oleuropein. Our results confirm good scavenging activity towards O(2).(-), HO. and ROO. and the antioxidant effect of genistein and oleuropein.  相似文献   

9.
This study investigates whether ozone could confer protection from hepatic ischemia reperfusion by modifying the accumulation of adenosine and xanthine during ischemia. A significant increase in both adenosine and xanthine accumulation was observed as a consequence of ATP degradation during hepatic ischemia. Adenosine exerts a protective effect on hepatic ischemia reperfusion injury since the elimination of endogenous adenosine accumulation with adenosine deaminase increased the hepatic injury associated with this process. On the other hand, the high xanthine levels observed after ischemia could exert deleterious effects during reperfusion due to reactive oxygen species generation from xanthine oxidase. The administration of allopurinol, an inhibitor of xanthine oxidase, attenuated the increase in reactive oxygen species and transaminase levels observed after hepatic reperfusion. Ozone treatment in liver maintained adenosine levels similar to those found after ischemia but led to a marked reduction in xanthine accumulation. In order to evaluate the role of both adenosine and xanthine, we tried to modify the protection confered by ozone, by modifying the concentrations of adenosine and xanthine. The metabolization of endogenous adenosine after ischemia abolished the protective effect conferred by ozone. When xanthine was administered previous to ozone treatment, the protection conferred by adenosine disappeared, showing both postischemic reactive oxygen species and transaminase levels similar to those found after hepatic ischemia reperfusion. Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.  相似文献   

10.
After 10 h osmotic stress in 25% polyethylene glycol (PEG6000) solution (–1.8 MPa) at 25 °C in darkness, the etiolated mungbean seedlings were transferred to pure water for recovery. The ethylene release rate and the level of reactive oxygen species (ROS), including superoxide radical (O2) and hydrogen peroxide (H2O2), were investigated during the recovery process. The results showed that ethylene production rate and amount of ROS increased dramatically after osmotic stress, and a close correlation was observed between ethylene release rate and concentrations of ROS. Inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) or aminooxyacetic acid (AOA), could reduce the ethylene release rate, but had no significant influence to the content of O2 and H2O2. As well as, silver thiosulfate (STS), an inhibitor of ethylene action, exhibited no obvious effect to the concentration of ROS, showing stress-inducible ethylene was not the cause for the increase of stress-inducible ROS. On the other hand, exogenous generator of superoxide radical (methylviologen, MV, or sodium dithionite, Na2S2O4) could enhance the ethylene production evidently, which could be inhibited by exogenous scavenger of superoxide radical (superoxide dismutase, SOD, or 1, 4-diazabicyclo (2,2,2) octane, DABCO). However, either exogenous H2O2 or catalase (CAT) had no significant influence on ethylene production. The results suggested that it was superoxide radical but not H2O2which was involved directly in osmotic stress-inducible ethylene biosynthesis. The dual-role of superoxide radical on stress ethylene biosynthesis was also discussed.  相似文献   

11.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

12.
Reactive oxygen species (ROS) are largely produced under pathological situations. To understand the etiology of disease, it is urgent to develop efficacious probes for detecting ROS. Herein, a novel nanoconjugate detection system constructed from gold clusters (AuNCs) and quantum dots (QDs) for fluorescence ratiometric‐sensing ROS was reported. Upon interacting with ROS, the red emission fluorescence (645 nm from QDs) in the detection system gradually decreased, while the green fluorescence (480 nm from AuNCs) changed little. The fluorescence ratio at the 2 wavelengths (I480 nm/I645 nm) was linearly correlated with the ROS, which could be used for the real‐time ratiometric detection of ROS. The developed nanoconjugates could be applied to monitor the ROS in inflammatory cells for its ability of generating abundant ROS and uptaking ability to nanoparticles. The stimulated ROS in inflammatory cells were monitored by AuNC‐QD and the results were consistent with the traditional 2′, 7′‐dichlorofluorescin diacetate method, confirming the reliability of the developed method. Featured with the merits of higher photostability, low background, high accuracy of ratiometric detection, the AuNC‐QD conjugate demonstrated its potential to be the probe for real‐time ROS detection in inflammatory cells.   相似文献   

13.
Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS.  相似文献   

14.
In monolayers of cultured rat astrocytes a number of agents that induce oxidative stress act synergistically with exposure to copper leading to rapid depolarization of the mitochondrial membrane potential (Psi m) and increased reactive oxygen species (ROS) production. Copper sensitized astrocytes to the action of menadione, an intracellular generator of superoxide anion radical, exogenous hydrogen peroxide (H2O2) and rotenone, an inhibitor of mitochondrial electron transport chain complex I. However, significant differences were observed in the ability to modulate the copper-enhanced oxidative stress depending on which stressor was used. The inhibitor of mitochondrial permeability transition cyclosporin A attenuated the effect of copper and rotenone, but had no protective action in the case of H2O2/copper and menadione/copper combinations. The H2O2 scavenger pyruvate was effective at protecting mitochondria against damage associated with the combined exposure to H2O2/copper and menadione/copper but not to the rotenone/copper combination. The antioxidant Trolox was ineffective at protecting against any of these actions and indeed had a damaging effect when combined with copper. The membrane-permeable copper chelator neocuproine combined with sensitizing concentrations of menadione caused a decrease in Psi m, mimicking the action of copper. Penicillamine, a membrane-impermeable copper chelator, was effective at reducing copper sensitization. Endogenous copper, mobilized during periods of oxidative stress, may play a role in the pathophysiology of brain injury. Our results suggest that this might be particularly dangerous in dysfunctional conditions in which the mitochondrial electron transport chain is compromised.  相似文献   

15.
Based on haemolytic activity and reactive oxygen species (ROS) production of Chattonella marina, Chattonella antiqua, Heterocapsa circularisquama, Alexandrium tamiyavanichii and Karenia mikimotoi, the species were categorized into four types. (1) H. circularisquama: haemolytic activity was detected in both cell suspension and cell-free culture supernatant, but with greater activity in cell suspension than in the supernatant suggesting the presence of both cell surface and secreted haemolytic agents. (2) A. tamiyavanichii: equal haemolytic activities were detected in both the cell suspension and cell-free culture supernatant suggesting the presence of only secreted haemolytic agents. (3) K. mikimotoi: haemolytic activity was detected only in the cell suspension, indicating haemolytic agents occur only on the cell surface. (4) C. marina and C. antiqua: no significant haemolytic activity was detected in either cell suspension or cell-free culture supernatant, but high ROS were detected in the cell suspensions. Heterocapsa circularisquama and K. mikimotoi showed lethal effects on rotifers (Brachionus plicatilis), whereas A. tamiyavanichii, C. marina and C. antiqua had no effect. Our results suggest that H. circularisquama, K. mikimotoi and A. tamiyavanichii produce haemolytic agents with distinct characteristics, whereas C. marina and C. antiqua have an extremely potent ability to produce ROS.  相似文献   

16.
17.
Copper [Cu(II)] is an ubiquitous transition and trace element in living organisms. It increases reactive oxygen species (ROS) and free-radical generation that might damage biomolecules like DNA, proteins, and lipids. Furthermore, ability of Cu(II) greatly increases in the presence of oxidants. ROS, like hydroxyl (·OH) and superoxide (·O2) radicals, alter both the structure of the DNA double helix and the nitrogen bases, resulting in mutations like the AT→GC and GC→AT transitions. Proteins, on the other hand, suffer irreversible oxidations and loss in their biological role. Thus, the aim of this investigation is to characterize, in vitro, the structural effects caused by ROS and Cu(II) on bacteriophage λ DNA or proteins using either hydrogen peroxide (H2O2) or ascorbic acid with or without Cu(II). Exposure of DNA to ROS-generating mixtures results in electrophoretic (DNA breaks), spectrophotometric (band broadening, hypochromic, hyperchromic, and bathochromic effects), and calorimetric (denaturation temperature [T d], denaturation enthalpy [ΔH], and heat capacity [C p] values) changes. As for proteins, ROS increased their thermal stability. However, the extent of the observed changes in DNA and proteins were distinct, depending on the efficiency of the systems assayed to generate ROS. The resulting effects were most evident when Cu(II) was present. In summary, these results show that the ROS, ·O2 and ·OH radicals, generated by the Cu(II) systems assayed deeply altered the chemical structure of both DNA and proteins. The physiological relevance of these structural effects should be further investigated.  相似文献   

18.
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.  相似文献   

19.
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 μmol/l ascorbic acid, 0.23 μmol/l (+)catechin, and 3 μmol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.  相似文献   

20.
Chloroplastic glutamine synthetase (GS: EC 6·3·1·2), the octamer of the 44 kDa subunit, is rapidly degraded under photo‐oxidative stress conditions in leaves, chloroplasts, and chloroplast lysates. Recent studies have suggested that chloroplastic GS might be cleaved by the hydroxyl radical under such conditions ( Thoenen & Feller 1998 ; Australian Journal of Plant Physiology 25, 279–286; Palatnik, Carrillo & Valle 1999 , Plant Physiology 121, 471–478). Herein, we present evidence which supports the above hypothesis. When the purified GS from wheat (Triticum aestivum L.) chloroplasts was exposed to the hydroxyl radical‐generating system comprising H2O2–FeSO4–ascorbic acid or FeCl3–ascorbic acid, the GS subunit was degraded into four distinct fragments having apparent molecular masses of 39, 35, 32 and 28 kDa. The apparent molecular masses and isoelectric points of these fragments were identical to those of the respective fragments found in the illuminated lysates of chloroplasts. In addition, the appearance of the GS fragments was completely suppressed in the presence of the scavenger for the hydroxyl radical, n‐propyl gallate, in the illuminated lysates of chloroplasts. These results strongly support the hypothesis that the primary cleavage of GS is directly driven by the hydroxyl radical, formed by Fenton reaction under photo‐oxidative stress conditions in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号