首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A temperature sensitive kanamycin (Km) resistant R plasmid, Rtsl, was found to confer cupric ion (Cu2+) resistance on its hosts in Escherichiacoli. At conjugal transfer, two kinds of segregants were obtained from Rtsl, i.e. Cu2+ resistant, Km sensitive and Km resistant, Cu2+ sensitive plasmids. Protein T existed in E.coli cells harboring Rtsl or the CurKms-plasmid. The inhibitory effect on the host cell growth at 43°C was observed with Rtsl+ or the KmrCus-plasmid+ cells. A relationship between these Rtsl derivatives and Rtsl in Proteusmirabilis which has been studied was discussed.  相似文献   

2.
A total of 58 bacterial strains degrading naphthalene and salicylate were isolated from soil samples polluted with oil products, collected in different regions of Russia during winter and summer. The isolates were assessed for their ability to grow at low temperatures (4, 8, and 15°C); bacteria growing at 4°C in the presence of naphthalene or salicylate accounted for 65 and 53%, respectively, of the strains isolated. The strains differed in the temperature dependence of their growth rates. It was demonstrated that the type of expression of the Nah+ phenotype at low temperatures depended on the combination of host bacterium and plasmid.  相似文献   

3.
Summary The temperature-sensitive dnaA46 mutation in Escherichia coli can be phenotypically suppressed at 42° C by oversupply of GroELS proteins, and the suppressed cells grow extremely slowly at 30° C. We found that the phenotype of dnaA46 showing this cold sensitivity was dominant over the phenotype of dnaA +, and could not be rescued by introduction of oriC-independent replication systems. These results suggest that the cold sensitivity was not caused by a simple defect in replication. When a growing culture of a dnaA46 strain with a GroELS-overproducing plasmid was shifted from 42° to 30° C in the presence of chloramphenicol, the chromosomal DNA replicated excessively. Initiation of replication occurred at the site of oriC repeatedly four or five times during a 4 h incubation period without concomitant protein synthesis, indicating an excessive capacity for initiation. Such overreplication did not take place at 42° C in the suppressed dnaA46 strain, or at either temperature in GroELS-oversupplied dnaA + cells. No significant difference was detected between the cellular content of DnaA protein in suppressed cells where the initiation capacity was abnormally high, and that in wild-type cells in which the initiation capacity was normal. Thus, DnaA protein might function in vivo through some phase control mechanism for initiation, apart from a simple regulation by its total amount. A possible mechanism is proposed based on the participation of GroELS proteins in protein folding.A preliminary account of this work was presented at the Annual Meeting of the Molecular Biology Society of Japan in 1989.  相似文献   

4.
A copy number mutant of the Rtsl replicon (copy number 1–2 copies/cell) was obtained. A one-base substitution in the repA region results in a single amino acid change from histidine to asparagine at position 159. This mutation increased the plasmid copy number by up to 120-fold depending upon the growth conditions. At 42.5° C the plasmid with the wild type replicon was unstable while the mutated replicon was relatively stable.  相似文献   

5.
The nucleotide sequence was determined of the region upstream of the mukB gene of Escherichia coli. Two new genes were found, designated kicA and kicB (killing of cell); the gene order is kicB-kicA-mukB. Promoter activities were detected in the regions immediately upstream of kicB and kicA, but not in front of mukB. Gene disruption experiments revealed that the kicA disruptant was nonviable, but the kicB-disrupted mutant and the mutant lacking both the kicB and kicA genes were able to grow. When kicA disruptant cells bearing a temperature-sensitive replication plasmid carrying the kicA + gene were grown at 30° C and then transferred to 42° C, the mutant cells gradually lost colony-forming ability, even in the presence of a mukB + plasmid. Rates of protein synthesis, but not of RNA or DNA synthesis, fell dramatically during incubation at 42° C. These results suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid.  相似文献   

6.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

7.
Summary The in vivo role of the Escherichia coli protein DnaA in the replication of plasmid pBR322 was investigated, using a plasmid derivative carrying an inducible dnaA + gene. In LB medium without inducer, the replication of this plasmid, like that of pBR322, was inhibited by heat inactivation of chromosomal DnaA46 protein so that plasmid accumulation ceased 1 to 2 h after the temperature shift. This inhibition did not occur when the plasmid dnaA + gene was expressed in the presence of the inducer isopropyl-1-thin--d-galactopyranoside (IPTG). Inhibition was also not observed in glycerol minimal medium or in the presence of low concentrations of rifampicin or chloramphenicol. Deletion of the DnaA binding site and the primosome assembly sites (pas, rri) downstream of the replication origin did not affect the plasmid copy number during exponential growth at 30° C, or after inactivation of DnaA by a shift to 42° C in a dnaA46 host, or after oversupply of DnaA, indicating that these sites are not involved in a rate-limiting step for replication in vivo. The accumulation of the replication inhibitor, RNAI, was independent of DnaA activity, ruling out the possibility that DnaA acts as a repressor of RNAI synthesis, as has been suggested in the literature. Changes in the rate of plasmid replication in response to changes in DnaA activity (in LB medium) could be resolved into an early, rom-dependent, and a late, rom-independent component. Rom plasmids show only the late effect. After heat inactivation of DnaC, plasmid replication ceased immediately. These results, together with previously published reports, suggest that DnaA plays no specific role during in vivo replication of ColE1 plasmids and that the gradual cessation of plasmid replication after heat inactivation of DnaA in LB medium results from indirect effects of the inhibition of chromosome replication and the ensuing saturation of promoters with RNA polymerase under nonpermissive growth conditions.  相似文献   

8.
Summary E. coli strains carrying the rnc-105 allele do not show any level of RNase III in extracts, grow slower than rnc + strains at temperatures up to 45°C and fail to grow at 45°C. Revertants which can grow at 45°C were isolated. The vast majority of them still do not grow as fast as rnc + strains and did not regain RNase III activity. The mutation(s) which caused them are suppressor mutations (physiological suppressors) which do not map in the immediate vicinity of the rnc gene. A few of the revertants regain normal growth, and contain normal levels of RNase III. They do not harbor the rnc-105 allele and therefore are considered to be true revertants. By using purines other than adenine it was possible to isolate rnc + pur - revertants from an rnc - pur - strain with relative ease. They behaved exactly like the true rnc + revertants isolated from rnc - strains at 45°C.A merodiploid strain which contains the rnc + gene on an episome behaves exactly like an rnc + strain with respect to growth and RNA metabolism, eventhough its specific RNase III activity is about 60% of that of an rnc + strain; thus the level of RNase III is not limiting in the cell.The rnc - strains show a characteristic pattern of transitory molecules, related to rRNA, 30S, 25S, p23 and 18S, which are not observed in rnc + strains. This pattern is unchanged in rnc - strains and in the revertants which are still lacking RNase III, regardless of the temperature in which RNA synthesis was examined (30° to 45°C). On the other hand, in the rnc + strains as well as in the true revertants and the rnc +/rnc - merodiploid, the normal pattern of p16 and p23 is observed at all temperatures. These findings suggest that all the effects observed in RNase III- strains are due to pleiotropic effects of the rnc-105 allele, and that the enzyme RNase III is not essential for the viability of the E. coli cell.  相似文献   

9.
Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 °C, while incubation at 40 °C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51000 units ml–1 and 25000 units ml–1, respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.  相似文献   

10.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31–34°C and 23–25°C. None of the 12 strains studied were able to grow at 1.5 or 4°C. Representatives of six methanotrophic species (strains Mcs. echinoides2, Mm. methanica12, Mb. bovis89, Mcs. pyriformis14, Mb. chroococcum90, and Mb. vinelandii87) could grow at 10°C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits the experimental data well, although, for most methanotrophs, with symmetrical approximations for the optimal temperature.  相似文献   

11.
Summary MiniF, a 9.3 kb fragment of the dispensable F plasmid, carries genes necessary for its replication and partition as well as for the expression of an SOS signal. The arrest of replication of a thermo-sensitive miniFts at 42°C induced SOS functions such as prophage , sfiA expression, W-reactivation of UV-irradiated phage . Two miniF ts9 and ts17 mutations were located within the KpnI fragment (43.6–46.9) in the minimal oriS replicon. Blocking miniF replication by incBC + incompatibility genes situated in trans on a second plasmid also induced SOS functions. In contrast, if miniFts17 plasmid escaped the replication block at 42°C by being inserted into pR325, there was no SOS induction. SOS induction by the arrest of miniF replication required the miniF lynA + locus in cis, the host recA + and lexA + genes. We found that SOS induction was increased greatly near the stationary phase and that cell viability declined. During host cell exponential growth, miniFts9 and miniFts17 plasmids were lost rapidly, although SOS induction persisted for several cell generations. We postulate that lynA expresses a persistent product that may lead to the unwinding of chromosomal DNA.  相似文献   

12.
Summary Temperature sensitive dnaAts46 mutants, in which initiation of chromosome replication is blocked at 42° C, are unable to maintain a dv plasmid at the permissive temperature unless the plasmid carries a mutation in gene P of the type permitting phage to grow in groP (dnaB) bacteria. The growth rate of dnaAts46 mutants seems to be impaired by the presence of the dvP mutant plasmid.Cold sensitive dnaAcos mutants which overinitiate replication at low temperature and grow normally only at 40° and above, can maintain efficiently dvP + plasmids as well as dvP mutants. Cold sensitivity of dnaAcos mutants is suppressed by the presence of the plasmid dvP + and by certain dvP mutants, but not by others.The gene P product seems to act by reducing the initiation potential of both types of dnaA mutants, aggravating the initiation defect in dnaAts46 and correcting the overinitiation of dnaAcos.  相似文献   

13.
Summary Production of tryptophan by a temperature sensitive recombinant microorganism (Escherichia coli W3110 trpLDtrpR ts tna (pCRT185)) was investigated. In a single-stage continous culture, at an elevated temperature, 42°C (derepressed condition), tryptophan concentration increased in an early phase of the fermentation, and then gradually decreased with time. The reduction in the production rate was mostly due to the segregation of the plasmid and subsequent increase of plasmid-free cells. However, the plasmid could be maintained stable at 37°C, with repressed condition oftrp-operon, over 200 generations. A two-stage continuous culture system, i.e. cell growth was maintained in the first stage at 37°C and gene expression was induced in the second stage at 42°C, was therefore tested to improve the performance of the fermentation system. Operation of the two-stage system showed that the plasmid stability was significantly improved, and the specific rate of tryptophan production was maintained almost constant for more than 500 hours in the second stage.  相似文献   

14.
Summary Suppression of a dnaA46 mutation by integration of plasmid R100.1 derivatives in the termination region of chromosome replication in E. coli results in medium dependence, the suppressed bacteria being sensitive to rich medium at 42° C. Derivatives of such bacteria have been selected for growth at 42° C in rich medium and we have analyzed representatives of the most frequently observed type: bacteria displaying, once cured of the suppressor plasmid, both rich-medium sensitivity and temperature sensitivity. We found, in all cases, that the chromosome had undergone a major inversion event between two inverted IS5's. One is located at 29.2 min on the chromosome map and the other at either one of two positions between 69 and 80 min. The consequences of such inversions for cell growth are discussed. Some of them result from the fact that the replication terminator T2 is located, in inverted chromosomes, close to oriC in the orientation which allows its functioning as a terminus (de Massy et al. in press). Our observations allow an estimation of the frequency of inversions arising from recombination between pairs of inverted chromosomal IS, which could be as high as 10-2 per cell per generation. We also found that inversion reversal occurs frequently after Hfr conjugational transfer of one of the IS5's, in its wild-type location. This led us to propose a new mechanisms of recombination, in which the incoming DNA strands serve as guides to favor recombination between the resident sequences.Abbreviations Sin suppresive integration - Rms/Rmr rich medium sensitivity/resistance - Ts/Tr temperature sensitivity/resistance - Apr ampicillin resistance - Nalr nalidixic acid resistance - Spr spectinomycin resistance - Str streptomycin resistance - Tcr tetracycline resistance  相似文献   

15.
Growth characteristics ofDeleya halophila (CCM 3662T), were determined using a defined medium.Deleya halophila presented its optimal growth at 7.5% (wt/vol) total salts when it was grwon at incubation temperatures of 32° and 42°C; when the temperature was lowered to 22°C, it had optimal growth at 5% (wt/vol) total salts. This bacterium had an absolute requirement for the Na+ cation; it could not be replaced by other cations. NaBr, Na2SO4, or Na2S2O3 could be substituted for NaCl in the growth medium, but, when MgCl2, KCl, LiCl, NaI, NaF, or NaNO3 was substituted for NaCl, the medium did not support growth. Growth rates of the strain were diverse when NaCl was partially replaced by other sodium salts. Finally,D. halophila suffered loss of viability when the culture was diluted into different low NaCl concentrations (0, 0.5%, and 1%, wt/vol) at various incubation temperatures.  相似文献   

16.
A new species of halophilic photosynthetic bacteria, Rhodospirillum salinarum, has been isolated and described. Its natural habitat are the terminal crystallization ponds of solar salt production plants. R. salinarum grows optimally at 42°C in the presence of 6–18% NaCl (w/v). Growth requirements are complex, yeast extract and peptone being required both for aerobic heterotrophic and for anaerobic phototrophic growth. Increasing concentrations of NaCl in the growth media did not give rise to any corresponding increase in intracellular concentrations of K+, Na+, polyalcohols or amino acids. Malate dehydrogenase from R. salinarum is not halophilic, being inhibited even at low concentrations of Na+ or K+. The GC mol % of DNA from R. salinarum is markedly higher than that for DNA from R. salexigens, the only previously described halophilic species of the genus Rhodospirillum.  相似文献   

17.
Lactococcus lactis subsp.lactis 484 produced a proteinaceous antibacterial substance designated as lactococcin capable of inhibiting members of theLactococcus group,Bacillus cereus, Staphylococcus aureus, andSalmonella typhi. Growth of this culture in the presence of 2–30 g/ml of ethidium bromide or acriflavin or novobiocin, and at elevated temperature (39° and 41°C), could not produce any lactococcin-negative (Lap) variants. However, protoplast-induced curing with lysozyme was successful in developing Lap derivatives. Two types of cured derivatives, namely Lac Lap+ and Lac Lap, were obtained. Lap variants were also lacking sucrose-fermenting ability (Suc+) and lactococcin resistance (Lapr). The lactose-negative (Lac) variants and Lap+ were clearly lacking the largest (65 Md) plasmid. However, Lap Suc Laps variants lost a 2 Md plasmid.L. lactis subsp.lactis 484 transferred lactose-fermenting ability as well as Lap+ Suc+ Lapr phenotypes simultaneously toL. lactis subsp.lactis LM 2306 and LM 0230 by surface mating at a frequency of 10–4 and 10–1 per donor respectively. However, cured Lac Lap transconjugants could not transfer Lac+ Lap+ Suc+ Lapr phenotypes to any of these recipient strains. Our results indicate that Lac+ and Lap+ Suc+ Lapr phenotypes are associated with 65 Md and 2 Md plasmids respectively. Conjugal transfer of 2 Md plasmid is possible only in the presence of a conjugative 65 Md plasmid.  相似文献   

18.
Twelve strains ofYersinia enterocolitica were examined for their ability to bind spontaneously to murine leukocytes. Each of eight HeLa cell invasive strains exhibited nonselective binding to peritoneal leukocytes, lymph node leukocytes, and thymocytes, whereas four noninvasive strains lacked binding properties. Like the HeLa cell invasion, the binding ofY. enterocolitica to leukocytes was much less efficient for bacteria grown at 37°C than for bacteria grown at 22°C. The binding properties were not influenced by the virulence plasmid that codes for Vwa+ phenotype. This leukocyte binding test is proposed as a simple assay for invasive properties ofY. enterocolitica.  相似文献   

19.
Reed B. Wickner 《Genetics》1976,82(2):273-285
Mutants of the killer plasmid of Saccharomyecs cerevisiae have been isolated that depend upon chromosomal diploidy for the expression of plasmid functions and for replication or maintenance of the plasmid itself. These mutants are not defective in any chromosomal gene needed for expression or replication of the killer plasmid.—Haploids carrying these mutant plasmids (called d for diploid-dependent) are either unable to kill or unable to resist being killed or both and show frequent loss of the plasmid. The wild-type phenotype (K+R+) is restored by mating the d plasmid-carrying strain with either (a) a wild-type sensitive strain which apparently has no killer plasmid; (b) a strain which has been cured of the killer plasmid by growth at elevated temperature; (c) a strain which has been cured of the plasmid by growth in the presence of cycloheximide; (d) a strain which has lost the plasmid because it carries a mutation in a chromosomal mak gene; or (e) a strain of the opposite mating type which carries the same d plasmid and has the same defective phenotype, indicating that the restoration of the normal phenotype is not due to recombination between plasmid genomes or complementation of plasmid or chromosomal genes.—Sporulation of the phenotypically K+R+ diploids formed in matings between d and wild-type nonkiller strains yields tetrads, all four of whose haploid spores are defective for killing or resistance or maintenance of the plasmid or a combination of these. Every defective phenotype may be found among the segregants of a single diploid clone carrying a d plasmid. These defective segregants resume the normal killer phenotype in the diploids formed when a second round of mating is performed, and the segregants from a second round of meiosis and sporulation are again defective.  相似文献   

20.
Summary A method for Tn1 insertion mutagenesis in Escherichia coli has been developed using pTH10, a mutant plasmid of RP4 temperature-sensitive for maintenance. The mutagenesis involves three steps. Firstly, from strains carrying pTH10 showing resistance to the antibiotics kanamycin, tetracycline, and ampicillin at 30° C but not at 42° C, clones are isolated resistant to kanamycin at 42° C. Such temperature-independent, drug resistant clones probably carry pTH10 integrated into the host chromosome. Secondly, they are cultivated at 30° C. At this temperature segregants carrying pTH10, which has been excised from the host chromosome, accumulate. Thirdly, to cure such segregants of autonomous pTH10, they are cultivated at 42° C. By these procedures, clones free of pTH10, but carrying Tn1 insertions on the host chromosome, were obtained.About 3% of the clones carrying Tn1 insertions were auxotrophic. Distribution of auxotrophic mutations was not random, indicating the existence of preferential integration sites of Tn1 on the host chromosome. The frequency of precise excision of Tn1 was less than 10-10.The pTH10 plasmid has a wide host range among Gram-negative bacteria and thus may serve as a excellent vector for insertion mutagenesis of Tn1 in many Gram-negative bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号