首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eicosanoids, which include prostaglandins, thromboxanes, and leukotrienes, are produced from arachidonic acid by three main pathways in cells, including cyclooxygenases and lipoxygenases, and cytochrome P450 enzymes. Accumulated evidence indicates that a certain peroxide tone is required for the initiation of reaction by lipoxygenases and cyclooxygenases. An endogenous inhibitor of arachidonate oxygenation was suspected in the cytosolic fraction of human epidermoid carcinoma A431 cells. After a series of studies, the existence of this inhibitor was confirmed, while it was purified and characterized. By amino acid sequence analysis, the inhibitor in A431 cells was subsequently identified as a phospholipid hydroperoxide glutathione peroxidase (PHGPx). Depletion of cellular glutathione in cells by diethyl maleate or by dibuthionine-sulfoximine results in an increase in enzyme activities of 12(S)-lipoxygenase and cyclooxygenase, suggesting that glutathione-depleting agents abolish the enzyme activity of PHGPx in cells. Stable transfectants of A431 cells with overexpression and depletion of PHGPx have been constructed, respectively. Reduction of arachidonate metabolism through 12(S)-lipoxygenase and cyclooxygenase 1 and that of the arsenite-induced generation of reactive oxygen species are observed in cells overexpressing PHGPx. On the other hand, enhancement of arachidonate metabolism and the arsenite-induced generation of reactive oxygen species is detected in PHGPx-depleted cells. In conclusion, the endogenous inhibitor of arachidonate metabolism present in A431 cells is a PHGPx, which plays a functional role in the down-regulation of arachidonate oxygenation catalyzed by 12(S)-lipoxygenase and cyclooxygenase 1 through the reduction of the level of intracellular lipid hydroperoxides. The latter acts as the peroxide tone for arachidonate metabolism in A431 cells.  相似文献   

2.
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.  相似文献   

3.
Regulation of arachidonate metabolism in human epidermoid carcinoma A431 cells by phospholipid hydroperoxide glutathione peroxidase (PHGPx) and cytosolic glutathione peroxidase (GPx1) was studied. In order to study the effect of reduced glutathione (GSH) on the catalysis regulation of these oxygenation enzymes, diethyl maleate was used to deplete the intracellular GSH. In the presence of 13-hydroperoxyoctadecadienoic acid, the enzymatic catalysis of cyclooxygenase and 12-lipoxygenase was significantly increased in the GSH-depleted cells. In terms of the inhibitory effect on 12-lipoxygenase, PHGPx was more sensitive to GSH concentrations than GPx1. Inhibition of PHGPx activity by the treatment of cells with antisense oligonucleotide of PHGPx mRNA increased the enzymatic catalysis of both cyclooxygenase and 12-lipoxygenase. In conclusion, the results indicate that catalysis of cyclooxygenase and 12-lipoxygenase in A431 cells was regulated by redox-reaction, and PHGPx seems to play an important role in the controlling of these reactions.  相似文献   

4.
The 12(S)-lipoxygenase (12-LOX) pathway of arachidonic acid (AA) metabolism after dioxygenation to 12(S)-hydroperoxy-eicosatetraenoic acid is bifurcated in a reduction route to formation of 12(S)-hydroxy-eicosatetraenoic acid (12-HpETE) and an isomerization route to formation of hepoxilins. Interestingly, we found that the rat insulinoma RINm5F cells, which are devoid of cytoplasmic glutathione peroxidase (cGPx)/phospholipid hydroperoxide glutathione peroxidase (PHGPx), produce solely hepoxilin A(3) (HXA(3)). Since HXA(3) synthesis was abolished in heat-denatured or cGPx- or PHGPx-transfected cells, it was tempting to speculate that a HXA(3) synthase activity regulated by cGPx/PHGPx is present. To confirm this assumption we incubated AA with HeLa cells overexpressing the rat leukocyte-type 12-LOX. Neither HXA(3) nor 12(S)-HETE were detected due to abundance of cGPx/PHGPx. But, pretreatment of transfected cells with diethyl maleate, an inhibitor of glutathione and PHGPx, restored HXA(3) synthase and 12-LOX activities. Thus, we conclude, that cells containing rat leukocyte-type 12-LOX also possess an intrinsic HXA(3) synthase activity, which is activated by inhibition of cGPx/PHGPx. In normal cells HXA(3) is down-regulated by cGPx/PHGPx, but, it is persistently activated in oxidatively stressed cells deficient in cGPx/PHGPx, such as RINm5F.  相似文献   

5.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

6.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

7.
12-Hydroxyeicosatetraenoic acid (12-HETE) is formed from arachidonic acid either by 12-lipoxygenase or by a cytochrome P450 monooxygenase. 12-Lipoxygenase is generally localized in the soluble cytosolic fraction, and the cytochrome P450 monooxygenase is a microsomal enzyme. In this study, 12-HETE biosynthesis and the regulation of 12-HETE biosynthesis by epidermal growth factor (EGF) in A431 cells were investigated. 12-HETE was biosynthesized from arachidonic acid by the microsomal fraction of A431 cells, but not by the cytosolic fraction. The formation of 12-HETE was inhibited by 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and caffeic acid. Nordihydroguaiaretic acid at 10(-4) M and 5,8,11,14-eicosatetraynoic acid at 10(-5) M almost completely inhibited its formation. However, the formation of 12-HETE was not affected by the presence of an NADPH-generating system, carbon monoxide, or SKF 525A. The biosynthetic 12-HETE was analyzed by chiral stationary phase high performance liquid chromatography and was highly enriched in (12S)-HETE. We therefore concluded that the enzyme responsible for the formation of (12S)-HETE in the microsomes of A431 cells is a 12-lipoxygenase. The microsomal 12-lipoxygenase of A431 cells belongs to the "leukocyte-type" enzyme as determined by substrate specificity and enzyme kinetics studies. The microsomal 12-lipoxygenase oxygenated linoleic acid much faster than the cytosolic platelet 12-lipoxygenase and is a "self-catalyzed inactivation" enzyme. Treatment of cells with 50 ng/ml EGF significantly induced microsomal 12-lipoxygenase activity. The lag period for the expression of the stimulatory effect of EGF on 12-lipoxygenase activity was approximately 10 h. The stimulatory effect of EGF on 12-lipoxygenase activity was completely blocked by treatment with 35 microM cycloheximide, indicating a requirement for de novo protein biosynthesis. Furthermore, the presence of the endogenous inhibitor of 12-lipoxygenase (which masked (12S)-HETE biosynthesis in intact cells) was identified in the cytosolic fraction of A431 cells. The putative inhibitor was enzyme-selective. It inhibited the leukocyte-type 12-lipoxygenase, but not the "platelet-type" enzyme.  相似文献   

8.
Cytokines or hydroperoxides upregulate cell adhesion molecules (CAM) in early stages of atherosclerosis. VCAM-1 expression was therefore investigated in rabbit aortic smooth muscle cells (SMC) stably transfected either with phospholipid hydroperoxide glutathione peroxidase (PHGPx; SMCPHGPx) as a hydroperoxide-reducing enzyme or with 15-lipoxygenase (15-LOX; SMCLOX) as a hydroperoxide-producing enzyme. Transfected cells showed up to 3-fold enhanced PHGPx and a marked LOX activity, respectively, that was absent in controls. Intracellular hydroperoxides were 6-fold higher in SMCLOX than in SMC or SMCPHGPx. Intracellular protein thiols were decreased by 50 and 90% in SMCPHGPx and SMCLOX, respectively. Glutathione mixed disulfides were tentatively increased from SMC via SMCPHGPx to SMCLOX, accordingly. Thiol reduction with tris(2-carboxyethyl)phosphine completely restored protein thiols in SMCPHGPx, whereas in SMCLOX only 60% of control values were recovered. Basal VCAM-1 mRNA levels were decreased by 50% in SMCPHGPx and 75% in SMCLOX. VCAM-1-inducibility was abrogated in SMCLOX but not in SMCPHGPx. Accordingly, NFkappaB-driven reporter gene activation by IL-1 was unaffected in SMCPHGPx but abolished in SMCLOX. The data confirm that PHGPx overexpression dampens CAM expression either by lowering stimulatory hydroperoxides or by using hydroperoxides for protein modification. But hydroperoxides, when constitutively overproduced as in SMCLOX, inhibit CAM expression and render cells refractory to IL-1 stimulation likely due to oxidation of protein thiols of the signaling system.  相似文献   

9.
Phospholipid-hydroperoxide glutathione peroxidase (PHGPx) exhibits high specific activity in reducing phosphatidylcholine hydroperoxides (PCOOHs) and thus may play a central role in protecting the skin against UV irradiation-triggered detrimental long term effects like cancer formation and premature skin aging. Here we addressed the role of PHGPx in the protection against UV irradiation-induced expression of matrix metalloproteinase-1 (MMP-1). For this purpose, we created human dermal fibroblast cell lines overexpressing human PHGPx. Overexpression led to a significant increase in PHGPx activity. In contrast to a maximal 4.5-fold induction of specific MMP-1 mRNA levels in vector-transfected cells at 24 h after UVA irradiation, no MMP-1 induction occurred at any studied time point after UVA treatment of PHGPx-overexpressing fibroblasts. As interleukin-6 (IL-6) was earlier shown to mediate the UVA induction of MMP-1, we studied whether PHGPx overexpression might interfere with the NFkappaB-mediated IL-6 induction and downstream signaling. Using transient transfections of IL-6 promoter constructs containing NFkappaB binding sites, we observed a high induction of the reporter gene luciferase in vector-transfected control cells and a significantly lower induction in PHGPx-overexpressing fibroblasts following UVA irradiation. Consistently both UVA irradiation and treatment of fibroblasts with PCOOHs led to phosphorylation and nuclear translocation of the p65 subunit, whereas cells overexpressing PHGPx exhibited impaired NFkappaB activation, p65 phosphorylation, and nuclear translocation. In line with this, the PHGPx-overexpressing fibroblasts showed a reduced constitutive and UVA irradiation-induced IL-6 release. After incubating PHGPx-overexpressing cells with PCOOHs a reduced induction of IL-6 was observed. This together with the suppression of UVA irradiation-induced IL-6 release in the presence of Trolox, a chain breaker of PCOOH-initiated lipid peroxidation, indicates that UVA irradiation-induced PCOOHs and subsequent lipid peroxides initiate the NFkappaB-mediated induction of IL-6, which mediates the induction of MMP-1. Our finding is particularly relevant in light of the already available small molecule mimetics of PHGPx.  相似文献   

10.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is >15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

11.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arachidonic acid (AA) under GSH depletion induced by glutamate. AA promoted the glutamate-induced cell death, which reduced caspase-3 activity and diminished internucleosomal DNA fragmentation. Furthermore, AA reduced intracellular NAD, ATP and membrane potentials, which indicated dysfunction of the mitochondrial membrane. Protease inhibitors such as N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 3, 4-dichloroisocumarin (DCI) but no Ac-DEVD, a caspase inhibitor, suppressed the glutamate-induced cell death. AA reduced the inhibitory effect of TPCK and DCI on the glutamate-induced cell death. These results suggest that AA promotes cell death by inducing necrosis from caspase-3-independent apoptosis. This might occur through lipid peroxidation initiated by ROS or lipid hydroperoxides generated during GSH depletion in C6 cells.  相似文献   

12.
Abstract: Expression of the protooncogene bcl-2 inhibits both apoptotic and in some cases necrotic cell death in many cell types, including neural cells, and in response to a wide variety of inducers. The mechanism by which the Bcl-2 protein acts to prevent cell death remains elusive. One mechanism by which Bcl-2 has been proposed to act is by decreasing the net cellular generation of reactive oxygen species. To evaluate this proposal, we measured activities of antioxidant enzymes as well as levels of glutathione and pyridine nucleotides in control and bcl-2 transfectants in two different neural cell lines—rat pheochromocytoma PC12 and the hypothalamic GnRH cell line GT1-7. Both neural cell lines overexpressing bcl-2 had elevated total glutathione levels when compared with control transfectants. The ratios of oxidized glutathione to total glutathione in PC12 and GT1-7 cells overexpressing bcl-2 were significantly reduced. In addition, the NAD+/NADH ratio of bcl-2 -expressing PC12 and GT1-7 cells was two- to threefold less than that of control cell lines. GT1-7 cells overexpressing bcl-2 had the same level of glutathione peroxidase, catalase, superoxide dismutase, and glutathione reductase activities as control cells. PC12 cells overexpressing bcl-2 had a twofold increase in superoxide dismutase and catalase activity when compared with matched control transfected cells. The levels of glutathione peroxidase and glutathione reductase in PC12 cells overexpressing bcl-2 were similar to those of control cells. These results indicate that the overexpression of bcl-2 shifts the cellular redox potential to a more reduced state, without consistently affecting the major cellular antioxidant enzymes.  相似文献   

13.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

14.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is unique in the substrate specificity among the glutathione peroxidase family because it can interact with lipophilic substrates, including the peroxidized phospholipids and cholesterol, and reduce these hydroperoxide to hydroxide compounds. However, what kinds of ligand can regulate the PHGPx expression is still unknown. In the present study, we found that sodium arsenite induced downregulation of mRNA, protein expression, and enzyme activity of PHGPx in time- and dose-dependent manners. At the same time, it upregulated mRNA and protein expression of p21(WAF1/CIP1). With the aid of agarose gel electrophoresis, and propidium iodide and annexin-V staining, we found that treatment of 30 microM sodium arsenite for 24 h induced apoptosis in human epidermoid carcinoma A431 cells and EA.hy926 cells. An increase of intracellular peroxide levels was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCFH-DA) after treatment of arsenite. Overexpression of PHGPx prevented arsenite-induced increase of intracellular peroxide levels, downregulation of PHGPx, upregulation of p21(WAF1/CIP1), and apoptosis in A431 cells. N-Acetyl-L-cysteine also significantly prevented arsenite-induced effects in A431 cells. Therefore, we concluded that reactive oxygen species were involved in arsenite-induced downregulation of PHGPx, upregulation of p21(WAF1/CIP1), and apoptosis in A431 cells.  相似文献   

15.
The stable nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was found to be a very potent activator of 5-lipoxygenase in cell-free preparations from rat polymorphonuclear (PMN) leukocytes, causing a 10-fold stimulation of arachidonic acid oxidation at concentrations as low as 0.5-1 microM. The enhancement of enzyme activity was not directly related to G protein activation since the effect of GTP gamma S could not be abolished by GDP nor replaced by GTP or guanylyl-imidodiphosphate (up to 100 microM). Furthermore, other phosphorothioate analogs, such as guanosine 5'-O-(2-thiodiphosphate), adenosine 5'-O-(3-thiotriphosphate), adenosine 5'-O-(2-thiodiphosphate), and adenosine 5'-O-thiomonophosphate all stimulated 5-lipoxygenase activity at concentrations of 10 microM or lower. This effect could not be detected with any of the corresponding nucleoside phosphate derivatives. The stimulation of 5-lipoxygenase activity by nucleoside phosphorothioates was observed under conditions where the reaction is highly dependent on exogenous hydroperoxides, such as in the presence of beta-mercaptoethanol or using enzyme preparations pretreated with sodium borohydride or glutathione peroxidase. GTP gamma S stimulated arachidonic acid oxidation by 5-lipoxygenase to the same extent as the activating hydroperoxides but had no effect on the reaction measured in the presence of optimal concentrations of 13-hydroperoxyoctadecadienoic acid (1-5 microM). Finally, sodium thiophosphate, but not sodium phosphate, markedly stimulated 5-lipoxygenase activity with properties similar to those of GTP gamma S. These results indicate that GTP gamma S and other phosphorothioate derivatives have redox properties that can contribute to increase 5-lipoxygenase activity by replacing the effect of hydroperoxides.  相似文献   

16.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

17.
Incubation of rat lung cytosol with arachidonic acid produced 12-hydroxy-5,8,10,14-eicosatetraenoic acid as a major product, which was identified by gas chromatography-mass spectrometry. By ammonium sulfate fractionation and DEAE-cellulose chromatography the arachidonate 12-lipoxygenase was purified about 30-fold from the rat lung cytosol. The partially purified enzyme was mostly free of the glutathione peroxidase activity and transformed arachidonic acid to its 12-hydroperoxide. 5,8,11,14,17-Eicosapentaenoic acid was also an active substrate, and the oxygenation at C-12 was confirmed by mass spectrometry. A significant amount of 12-lipoxygenase activity was also found in the microsomes and other particulate fractions.  相似文献   

18.
We recently demonstrated activation of 5-lipoxygenase activity in human polymorphonuclear leukocytes (PMN) on preincubation of the cells with glutathione-depleting agents, namely 1-chloro-2,4-dinitrobenzene (Dnp-C1) and azodicarboxylic acid bis[dimethylamide] (diamide). In this paper we show that Dnp-C1, but not diamide, impairs the reduction of added organic peroxides in whole PMN. Also, since co-incubation of fatty acid hydroperoxides with arachidonate caused activation of 5-lipoxygenase, we propose that Dnp-C1 increases the peroxide level in PMN which is required for the onset of lipoxygenase activity. This could be substantiated in PMN homogenates by a glutathione-dependent depression of arachidonate 5-lipoxygenation. At higher arachidonate concentrations and in the presence of Ca2+ the glutathione effect was not observed but additional glutathione peroxidase also blocked this maximally stimulated 5-lipoxygenase. Together with other experiments, it became obvious that the formation of leukotrienes, but also of 15-lipoxygenase products, requires a sharply defined threshold level of fatty acid hydroperoxides which are generated by the lipoxygenases and counteracted by glutathione-dependent peroxidase(s). Dnp-C1 influences this equilibrium by removing glutathione and thereby inhibiting glutathione-dependent peroxidase activity. From our data we conclude that it is the physiological function of the peroxidase activity in PMN to determine an efficiently regulated threshold level of hydroperoxide products, below which no activation of 5-lipoxygenase or 15-lipoxygenase can occur.  相似文献   

19.
Antigenic cross-linking of the high affinity IgE receptors on mast cells induced the synthesis of prostaglandin D(2) (PGD(2)). The production of PGD(2) in L9 cells, which overexpressed non-mitochondrial phospholipid glutathione peroxidase (PHGPx), was only one-third that in the control line of cells (S1 cells). The reduction in the formation of PGD(2) in L9 cells was reversed upon inhibition of PHGPx activity by buthionine sulfoximine. Experiments with inhibitors demonstrated that prostaglandin H synthase-2 (PGHS-2) was the isozyme responsible for the production of PGD(2) upon cross-linking of IgE receptors. The conversion of radiolabeled arachidonic acid to prostaglandin H(2) (PGH(2)) was strongly inhibited in L9 cells, whereas the rate of conversion of PGH(2) to PGD(2) was the same in L9 cells and S1 cells, indicating that PGHS was inactivated in L9 cells. The PGHS activity in L9 cells was about half that in S1 cells. However, PGHS activity in L9 cells increased to the level in S1 cells upon the addition of the hydroperoxide 15-hydroperoxyeicosatetraenoic acid or of 3-chloroperoxybenzoic acid. These results suggest that non-mitochondrial PHGPx might be involved in the inactivation of PGHS-2 in nucleus and endoplasmic reticulum via reductions in levels of the hydroperoxides that are required for full activation of PGHS. Therefore, it appears that PHGPx might function as a modulator of the production of prostanoids, in addition to its role as an antioxidant enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号