首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Reaction centres of photosynthesis isolated from the photosynthetic bacterium Rhodopseudomonas viridis by a single step of molecular sieve chromatography were crystallized. The isolated and the crystallized reaction centres contain four different protein subunits, including a membrane-bound cytochrome. Crystallization was achieved by salt precipitation using 2 to 3 m-ammonium sulphate as a precipitating agent in the presence of N,N-dimethyldodecylamine N-oxide as detergent and heptane-1,2,3-triol. Large tetragonal crystals of space group P41212 or its enantiomorph diffracting to beyond 2.5 Å were obtained.  相似文献   

2.
《BBA》1985,810(2):235-245
Linear dichroism (LD) and absorption (A) spectra of reaction centers from Rhodopseudomonas viridis included in the native chromatophores or reconstituted in planar aggregates have been recorded at 10 K. The samples were oriented in squeezed polyacrylamide gels and the primary donor P was in the reduced or (chemically) oxidized state. The LD spectra of reaction centers in these two states are in favor of a dimeric model of P in which excitonic coupling between the two non-parallel QY transitions leads to a main transition at 990 nm (parallel to the membrane plane) and another one of smaller oscillator strength at 850 nm (tilted at approx. 60° out of the membrane plane). These assignments are in close agreement with the ones proposed in a previous LD study at room temperature (Paillotin, G., Verméglio, A. and Breton, J. (1979) Biochim. Biophys. Acta 545, 249–264). The main QX excitonic component of P has a broad absorption peaking at 620 nm and it corresponds to dipoles exhibiting the same orientation as those responsible for the 850 nm transition. On the basis of the present LD study and of CD data of chemically oxidized-minus-reduced reaction centers, we proposed that the minor QX excitonic component of P is oriented close to the membrane plane and absorbs around 660 nm. The two monomeric bacteriochlorophylls exhibit a positive LD for both their QY transitions (unresolved at 834 nm) and their QX transitions (resolved at 600 and 607 nm), indicating that the planes of these molecules are only slightly tilted out of the membrane plane. The two bacteriopheophytins exhibit strong negative LD with identical LD/A values for their QY transitions (resolved at 790 and 805 nm) and small positive LD for their QX transitions (resolved at 534 and 544 nm), demonstrating that these two molecules are strongly tilted out of the membrane plane with each of the QY transitions tilted at approx. 50° out of that plane. A comparison of these LD data with the structural model derived from X-ray crystallography (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) clearly suggests that a good agreement exists between the results of the two techniques under the following conditions: (i) the C-2 symmetry axis of the reaction center runs along the membrane normal; (ii) excitonic coupling is present only in the primary donor special pair; and (iii) the direction of the optical transitions of the monomeric bacteriochlorophylls and of the bacteriopheophytins is not significantly perturbed by the interactions among the pigments. In addition, a carotenoid is detected in the isolated reaction center with an orientation rather perpendicular to the C-2 symmetry axis. Finally, a comparison of these data with similar ones obtained on the bacteriochlorophyll a-containing reaction center of Rhodopseudomonas sphaeroides 241 points towards a geometrical arrangement of the chromophores which is indistinguishable from the one observed in the reaction center of Rps. viridis.  相似文献   

3.
The purple non-sulfur bacterium Rhodopseudomonas viridis contains a photosynthetic reaction center which has been structurally resolved to 2.3 A providing a unique basis for the study of biological electron transfer processes by the method of site-specific mutagenesis. Here we report the construction of a puf operon deleted mutant strain incapable of photosynthetic growth. The deletion was introduced with the help of a newly constructed suicide vector by electroporation which is with conjugation another gene transfer system for R. viridis. The deletion strain was complemented by conjugational gene transfer with wild-type (WT) and mutated LM genes of the puf operon. The complemented WT and mutations YL162F and HL153F grew photosynthetically, expressed and assembled the four subunits L, M, H and Cyt c of the reaction center correctly. These first mutations already demonstrate the value of the R. viridis system for a detailed structure-function analysis of photosynthetic electron transfer.  相似文献   

4.
Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined.  相似文献   

5.
6.
Based on new Rhodopseudomonas (Rp.) viridis reaction center (RC) coordinates with a reliable structure of the secondary acceptor quinone (QB) site, a continuum dielectric model and finite difference technique have been used to identify clusters of electrostatically interacting ionizable residues. Twenty-three residues within a distance of 25 A from QB (QB cluster) have been shown to be strongly electrostatically coupled to QB, either directly or indirectly. An analogous cluster of 24 residues is found to interact with QA (QA cluster). Both clusters extend to the cytoplasmic surface in at least two directions. However, the QB cluster differs from the QA cluster in that it has a surplus of acidic residues, more strong electrostatic interactions, is less solvated, and experiences a strong positive electrostatic field arising from the polypeptide backbone. Consequently, upon reduction of QA or QB, it is the QB cluster, and not the QA cluster, which is responsible for substoichiometric proton uptake at neutral pH. The bulk of the changes in the QB cluster are calculated to be due to the protonation of a tightly coupled cluster of the three Glu residues (L212, H177, and M234) within the QB cluster. If the lifetime of the doubly reduced state QB2- is long enough, Asp M43 and Ser L223 are predicted to also become protonated. The calculated complex titration behavior of the strongly interacting residues of the QB cluster and the resulting electrostatic response to electron transfer may be a common feature in proton-transferring membrane protein complexes.  相似文献   

7.
The subunit arrangement of the reaction center complex (RC) of Rhodopseudomonas sphaeroides was studied by chemical modification with four different cross-linking reagents using purified RC in lauryldimethylamine oxide, RC incorporated into liposomes, and intact chromatophore membranes, from which RCs are isolated. The RC of R. sphaeroides is composed of three polypeptide subunits, H, M, and L, apparent molecular mass as determined in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 28,000, 24,000, and 21,000, respectively. The intra-complex products produced, were found to contain the polypeptides H-M-L, H-M, H-L, and M-L linked together. In addition, the cross-linking of cytochrome c to solubilized and membrane-bound RCs was observed with all four reagents. The products were found to be only a cytochrome c linked to either the M or L polypeptide. These results indicate that a portion of the L and M subunits of the RC must be exposed in situ on the periplasmic surface of the membrane near a binding site for cytochrome c on the RC, and all three subunits must be in close proximity to one another.  相似文献   

8.
In our lectures we first describe the history and methods of membrane protein crystallization, before we show how the structure of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis was solved. Then the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Finally we draw conclusions on the structure of the photosystem II reaction centre from plants and discuss the aspects of membrane protein structure. Sections 1 (crystallization), 4 (conclusions on the structure of photosystem II reaction centre and evolutionary aspects) and 5 (aspects of membrane protein structure) were presented and written by H.M., Sections 2 (determination of the structure) and 3 (structure and function) by J.D. We have arranged the paper in this way in order to facilitate continuous reading.  相似文献   

9.
The primary quinone acceptor radical anion Q(A)(-)(*) (a menaquinone-9) is studied in reaction centers (RCs) of Rhodopseudomonas viridis in which the high-spin non-heme Fe(2+) is replaced by diamagnetic Zn(2+). The procedure for the iron substitution, which follows the work of Debus et al. [Debus, R. J., Feher, G., and Okamura, M. Y. (1986) Biochemistry 25, 2276-2287], is described. In Rps. viridisan exchange rate of the iron of approximately 50% +/- 10% is achieved. Time-resolved optical spectroscopy shows that the ZnRCs are fully competent in charge separation and that the charge recombination times are similar to those of native RCs. The g tensor of Q(A)(-)(*) in the ZnRCs is determined by a simulation of the EPR at 34 GHz yielding g(x) = 2.00597 (5), g(y) = 2.00492 (5), and g(z) = 2.00216 (5). Comparison with a menaquinone anion radical (MQ(4)(-)(*)) dissolved in 2-propanol identifies Q(A)(-)(*) as a naphthoquinone and shows that only one tensor component (g(x)) is predominantly changed in the RC. This is attributed to interaction with the protein environment. Electron-nuclear double resonance (ENDOR) experiments at 9 GHz reveal a shift of the spin density distribution of Q(A)(-)(*) in the RC as compared with MQ(4)(-)(*) in alcoholic solution. This is ascribed to an asymmetry of the Q(A) binding site. Furthermore, a hyperfine coupling constant from an exchangeable proton is deduced and assigned to a proton in a hydrogen bond between the quinone oxygen and surrounding amino acid residues. By electron spin-echo envelope modulation (ESEEM) techniques performed on Q(A)(-)(*) in the ZnRCs, two (14)N nuclear quadrupole tensors are determined that arise from the surrounding amino acids. One nitrogen coupling is assigned to a N(delta)((1))-H of a histidine and the other to a polypeptide backbone N-H by comparison with the nuclear quadrupole couplings of respective model systems. Inspection of the X-ray structure of Rps. viridis RCs shows that His(M217) and Ala(M258) are likely candidates for the respective amino acids. The quinone should therefore be bound by two H bonds to the protein that could, however, be of different strength. An asymmetric H-bond situation has also been found for Q(A)(-)(*) in the RC of Rhodobacter sphaeroides. Time-resolved electron paramagnetic resonance (EPR) experiments are performed on the radical pair state P(960)(+) (*)Q(A)(-)(*) in ZnRCs of Rps. viridis that were treated with o-phenanthroline to block electron transfer to Q(B). The orientations of the two radicals in the radical pair obtained from transient EPR and their distance deduced from pulsed EPR (out-of-phase ESEEM) are very similar to the geometry observed for the ground state P(960)Q(A) in the X-ray structure [Lancaster, R., Michel, H. (1997) Structure 5, 1339].  相似文献   

10.
The binding of six herbicides of the triazine family to the photosynthetic reaction center of Rhodopseudomonas viridis was investigated with energy-minimization techniques, in order to correlate experimental with calculated data. The inhibitors were modeled in the active site according to the X-ray structure analysis of the complex formed between the triazine terbutryn (2-ethylamino-4-t-butylamino-6-methylthio-s-triazine) and the reaction center of R. viridis [Michel, H., Epp. O. & Deisenhofer, J. (1986) EMBO J. 5, 2445-2451]. 40 different energy minimizations were carried out with varying cutoff radii, partial charges on inhibitor atoms and dielectric constants, i.e. 10 different combinations of these were tested. The impact of these parameters on the calculated binding and interaction energy was either examined for all protein/triazine complexes or, in the case of the dielectric constant, a smaller sample was used. The calculated energies are dominated by van der Waals interactions, which change by up to 20% when extending the cutoff radius from 0.8 nm to 1.5 nm. The use of uniform or distance-dependent dielectric constant or partial charges on the inhibitor atoms does not severely influence the resulting structures, but shows a great impact on the calculated energies. In the two groups of triazines, each containing three inhibitors with methoxy or methylthio substituents, correlations of biological and calculated data were found quite often, but only once with all six triazines. The energy-minimized structures were compared and analysed. A third hydrogen bond, not seen in the X-ray analysis of the reaction center/tertubryn complex, was found between the t-butylamino moiety of terbutryn (and equivalent moieties in the other triazines) and the carbonyl oxygen of TyrL222.  相似文献   

11.
The structure of the disk of tobacco mosaic virus protein at low resolution has been determined by X-ray crystal analysis. Signs for the three principal projections were found by isomorphous replacement, using a mercury derivative. The heavy-atom positions were located by interpretation of difference Patterson maps on the basis of the non-crystallographic 17-fold rotational symmetry of the disk, and of the packing of the disks determined in the preceding paper (Finch et al., 1974).The electron density in the corresponding three projections was computed to a resolution of 6 Å. From the projections in the [100] and [010] directions, which are at right-angles to the 17-fold rotation axis, a three-dimensional electron density map has been calculated making use of the non-crystallographic symmetry. The procedure is similar to the three-dimensional image reconstruction technique used in electron microscopy.The map indicates that the subunits in the two rings face the same way and, hence, that the disk is polar. There are differences between the subunits in the two rings at high radius, which are presumably a consequence of the pairing interaction responsible for stabilizing the two-layer polar structure. The map has been compared with a low-resolution map of the intact virus, and certain common features can be identified, notably the site of the nucleic acid.  相似文献   

12.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.  相似文献   

16.
An orthorhombic crystal form (P2(1)2(1)2(1)) of the reaction center from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26 has been characterized. The crystals were grown from polyethylene glycol; the unit cell dimensions are a = 142.2 A, b = 139.6 A, and c = 78.7 A; and they contain one reaction center in each crystallographic asymmetric unit. The crystals diffract to at least 3.0 A resolution, and are suitable for detailed structural studies.  相似文献   

17.
It has previously been shown that replacement of the residue His L168 with Phe (HL168F) in the Rhodopseudomonas viridis reaction center (RC) leads to an unprecedented drastic acceleration of the initial electron transfer rate. Here we describe the determination of the x-ray crystal structure at 2.00-A resolution of the HL168F RC. The electron density maps confirm that a hydrogen bond from the protein to the special pair is removed by this mutation. Compared with the wild-type RC, the acceptor of this hydrogen bond, the ring I acetyl group of the "special pair" bacteriochlorophyll, D(L), is rotated, and its acetyl oxygen is found 1.1 A closer to the bacteriochlorophyll-Mg(2+) of the other special pair bacteriochlorophyll, D(M). The rotation of this acetyl group and the increased interaction between the D(L) ring I acetyl oxygen and the D(M)-Mg(2+) provide the structural basis for the previously observed 80-mV decrease in the D(+)/D redox potential and the drastically increased rate of initial electron transfer to the accessory bacteriochlorophyll, B(A). The high quality of the electron density maps also allowed a reliable discussion of the mode of binding of the triazine herbicide terbutryn at the binding site of the secondary quinone, Q(B).  相似文献   

18.
Chen IP  Mathis P  Koepke J  Michel H 《Biochemistry》2000,39(13):3592-3602
The cytochrome (cyt) subunit of the photosynthetic reaction center from Rhodopseudomonas viridis contains four heme groups in a linear arrangement in the spatial order heme1, heme2, heme4, and heme3. Heme3 is the direct electron donor to the photooxidized primary electron donor (special pair, P(+)). This heme has the highest redox potential (E(m)) among the hemes in the cyt subunit. The E(m) of heme3 has been specifically lowered by site-directed mutagenesis in which the Arg residue at the position of 264 of the cyt was replaced by Lys. The mutation decreases the E(m) of heme3 from +380 to +270 mV, i.e., below that of heme2 (+320 mV). In addition, a blue shift of the alpha-band was found to accompany the mutation. The assignment of the lowered E(m) and the shifted alpha-band to heme3 was confirmed by spectroscopic measurements on RC crystals. The structure of the mutant RC has been determined by X-ray crystallography. No remarkable differences were found in the structure apart from the mutated residue itself. The velocity of the electron transfer (ET) from the tetraheme cyt to P(+) was measured under several redox conditions by following the rereduction of P(+) at 1283 nm after a laser flash. Heme3 donates an electron to P(+) with t(1/2) = 105 ns, i.e., faster than in the wild-type reaction center (t(1/2) = 190 ns), as expected from the larger driving force. The main feature is that a phase with t(1/2) approximately 2 micros dominates when heme3 is oxidized but heme2 is reduced. We conclude that the ET from heme2 to heme3 has a t(1/2) of approximately 2 micros, i.e., the same as in the WT, despite the fact that the reaction is endergonic by 50 meV instead of exergonic by 60 meV. We propose that the reaction kinetics is limited by the very uphill ET from heme2 to heme4, the DeltaG degrees of which is about the same (+230 meV) in both cases. The interpretation is further supported by measurements of the activation energy (216 meV in the wild-type, 236 meV in the mutant) and by approximate calculations of ET rates. Altogether these results demonstrate that the ET from heme2 to heme3 is stepwise, starting with a first very endergonic step from heme2 to heme4.  相似文献   

19.
Two-dimensional crystals of the reaction-centre-light-harvesting complex I (RC-LH1) of the purple non- sulfur bacterium Rhodospirillum rubrum have been formed from detergent-solubilized and purified protein complexes. Unstained samples of this intrinsic membrane protein complex have been analysed by electron cryomicroscopy (cryo EM). Projection maps were calculated to 8.5 A from two different crystal forms, and show a single reaction centre surrounded by 16 LH1 subunits in a ring of approximately 115 A diameter. Within each LH1 subunit, densities for the alpha- and beta-polypeptide chains are clearly resolved. In one crystal form the LH1 forms a circular ring, and in the other form the ring is significantly ellipsoidal. In each case, the reaction centre adopts preferred orientations, suggesting specific interactions between the reaction centre and LH1 subunits rather than a continuum of possible orientations with the antenna ring. This experimentally determined structure shows no evidence of any other protein components in the closed LH1 ring. The demonstration of circular or elliptical forms of LH1 indicates that this complex is likely to be flexible in the bacterial membrane.  相似文献   

20.
Primary structure of the reaction center from Rhodopseudomonas sphaeroides   总被引:17,自引:0,他引:17  
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号