首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Creatine kinase from beef heart mitochondria is inactivated by 2,3-butanedione. The kinetics of inactivation of the mitochondrial enzyme is biphasic with a bend at a point corresponding to 50% inactivation. The inactivation rate constants of the first fast and the second slow phases of the reaction differ by one order of magnitude, thus suggesting the existence of two types of arginine residues, i.e. "fast" and "slow" ones, with different reactivities. The inactivation rate constant of the slow phase is very close to that for cytoplasmic creatine kinase. At saturating concentrations MgATP and MgADP afford complete protection of the slow phase of inactivation. It is assumed that the "slow" arginine is involved in the binding of metal-nucleotide substrates in the enzyme active center.  相似文献   

2.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

3.
The calcium-dependent change in the tryptophan fluorescence intensity of the sarcoplasmic reticulum Ca2+- and Mg2+-ATPase was investigated using different quenching reagents. It is demonstrated that only those compounds which are bound to the enzyme (i.e., 1-(9,10-dibromomyristoyl)-sn-2-glycerophosphorylcholine and 1-(9,10-dibromostearoyl)-sn-glycero-3-phosphorylcholine) are able to decrease the amplitude of the fluorescence decrement observed after removal of calcium ions. From the position of the bromine atom within the lysophosphatidylcholines, it is concluded that the tryptophan residues involved are located in the hydrophobic part of the ATPase molecule and are in contact with the hydrocarbon chains of the phospholipids.  相似文献   

4.
A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions. Proteins 32:43–51, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The effect of the iodination of tyrosyl residues in creatine kinase from rabbit muscle has been investigated at alkaline pH after reversible masking of the reactive thiol groups. The conversion of 4-5 tyrosyl residues to monoiodotyrosines as measured by spectrotitration and by radioactive iodine labelling resulted in almost total loss of enzymic activity. The modified enzyme was unable to bind its nucleotide substrates but no significant conformational change was revealed by optical rotatory dispersion or Stokes radius measurements. However, change in the reactivity of some non-essential thiol groups, presumably those located near the active thiol groups, was observed.  相似文献   

6.
We have studied the intrinsic fluorescence of the 12 tryptophan residues of electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). The fluorescence emission spectrum (lambda ex 295 nm) showed that the fluorescence is due to the tryptophan residues and that the contribution of the 22 tyrosine residues is minor. The emission maximum (lambda m 334 nm) and the bandwidth (delta lambda 1/2 56 nm) suggest that the tryptophans lie in hydrophobic environments in the oxidized protein. Further, these tryptophans are inaccessible to a range of ionic and nonionic collisional quenching agents, indicating that they are buried in the protein. Enzymatic or chemical reduction of ETF:QO results in a 5% increase in fluorescence with no change of lambda m or delta lambda 1/2. This change is reversible upon reoxidation and is likely to reflect a conformational change in the protein. The ubiquinone analogue Q0(CH2)10Br, a pseudosubstrate of ETF:QO (Km = 2.6 microM; kcat = 210 s-1), specifically quenches the fluorescence of one tryptophan residue (Kd = 1.6-3.2 microM) in equilibrium fluorescence titrations. The ubiquinone homologue UQ-2 (Km = 2 microM; kcat = 162 s-1) and the analogue Q0(CH2)10OH (Km = 2 microM; kcat = 132 s-1) do not quench tryptophan fluorescence; thus the brominated analogue acts as a static heavy atom quencher. We also describe a rapid purification for ETF:QO based on extraction of liver submitochondrial particles with Triton X-100 and three chromatographic steps, which results in yields 3 times higher than previously published methods.  相似文献   

7.

Background

Serum creatine kinase (CK) levels are reported to be around 70% higher in healthy black people, as compared to white people (median value 88 IU/L in white vs 149 IU/L in black people). As serum CK in healthy people is thought to occur from a proportional leak from normal tissues, we hypothesized that the black population subgroup has a generalized higher CK activity in tissues.

Methodology/Principal Findings

We compared CK activity spectrophotometrically in tissues with high and fluctuating energy demands including cerebrum, cerebellum, heart, renal artery, and skeletal muscle, obtained post-mortem in black and white men. Based on serum values, we conservatively estimated to find a 50% greater CK activity in black people compared with white people, and calculated a need for 10 subjects of one gender in each group to detect this difference. We used mixed linear regression models to assess the possible influence of ethnicity on CK activity in different tissues, with ethnicity as a fixed categorical subject factor, and CK of different tissues clustered within one person as the repeated effect response variable. We collected post-mortem tissue samples from 17 white and 10 black males, mean age 62 y (SE 4). Mean tissue CK activity was 76% higher in tissues from black people (estimated marginal means 107.2 [95% CI, 76.7 to 137.7] mU/mg protein in white, versus 188.6 [148.8 to 228.4] in black people, p = 0.002).

Conclusion

We found evidence that black people have higher CK activity in all tissues with high and fluctuating energy demands studied. This finding may help explain the higher serum CK levels found in this population subgroup. Furthermore, our data imply that there are differences in CK-dependent ATP buffer capacity in tissue between the black and the white population subgroup, which may become apparent with high energy demands.  相似文献   

8.
Forstner M  Berger C  Wallimann T 《FEBS letters》1999,461(1-2):111-114
We investigated the binding of ATP in the presence and absence of Mg(2+) to dimeric muscle creatine kinase (CK) by isothermal titration microcalorimetry as a function of pH and temperature. The thermodynamic parameters for these events show that (1) binding of nucleotide to the CK active site does not involve proton exchange with the buffer and (2) the active sites are the only nucleotide binding sites on CK. Interdependence of the active sites in the dimer could not be demonstrated. As CK undergoes major structural changes upon Mg-nucleotide binding, a thermodynamic cycle was employed to calculate the contributions of domain movements to the observed enthalpies.  相似文献   

9.
The kinetics of the phosphate exchange by creatine kinase (CK) was studied in solution and in the Langendorff-perfused rat heart at 37 degrees C. 31P inversion-transfer (IT) and saturation-transfer (ST) methods were applied. The kinetic parameters obtained by the two magnetization transfer methods were the same, whether in solution or in the perfused heart. Inversion transfer is the more efficient method, yielding the kinetic constants for the exchange and the relaxation rates of the transferred phosphate in both substrates, in one experiment. In solution the forward (kF) and reverse (kR) pseudo-first-order rate constants for the CK reaction (kF = k1[MgADP][H+]; kR = k-1[creatine]) as well as the concentrations of phosphocreatine (PCr), MgATP, and creatine (Cr) remained constant between pH 6.9 and pH 7.8. Equilibrium at this pH region is therefore maintained by compensating changes in the concentration of MgADP. The forward and reverse fluxes in the perfused heart were equal with an average flux ratio (fluxF/fluxR) of 0.975 +/- 0.065 obtained by both methods. Average values of kF and kR were 0.725 +/- 0.077 and 1.12 +/- 0.14 s-1, respectively. These results clearly indicate that the CK reaction in the Langendorff-perfused heart is in equilibrium and its rate is not limited by the diffusion of substrates between different locations of the enzyme. There is therefore no indication of compartmentation of substrates of the CK reaction.  相似文献   

10.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

11.
Muscle creatine kinase (CK) is a crucial enzyme in energy metabolism, and it exists in two forms, the reduced form (R-CK) and the oxidized form (O-CK). In contrast with R-CK, O-CK contained an intrachain disulfide bond in each subunit. Here we explored the properties of O-CK and its regulatory role on muscle CK. The intrachain disulfide bond in O-CK was demonstrated to be formed between Cys(74) and Cys(146) by site-directed mutagenesis. Biophysical analysis indicated that O-CK showed decreased catalytic activity and that it might be structurally unstable. Further assays through guanidine hydrochloride denaturation and proteolysis by trypsin and protease K revealed that the tertiary structure of O-CK was more easily disturbed than that of R-CK. Surprisingly, O-CK, unlike R-CK, cannot interact with the M-line protein myomesin through biosensor assay, indicating that O-CK might have no role in muscle contraction. Through in vitro ubiquitination assay, CK was demonstrated to be a specific substrate of muscle ring finger protein 1 (MURF-1). O-CK can be rapidly ubiquitinated by MURF-1, while R-CK can hardly be ubiquitinated, implying that CK might be degraded by the ATP-ubiquitin-proteasome pathway through the generation of O-CK. The results above were further confirmed by molecular modeling of the structure of O-CK. Therefore, it can be concluded that the generation of O-CK was a negative regulation of R-CK and that O-CK might play essential roles in the molecular turnover of MM-CK.  相似文献   

12.
The recently determined structure of octameric mitochondrial creatine kinase has provided new insights into the functioning of this enzyme and its role in channelling energy from the mitochondria to the cytoplasm. Creatine kinase, a member of the family of guanidino kinases, is structurally similar to glutamine synthetase, suggesting a possible evolutionary link between both protein families  相似文献   

13.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K(m) and V(max) values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

14.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

15.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

16.
Tryptophan fluorescence lifetimes at pH 2 and pH 8 have been obtained for lysozyme and for lysozyme derivatives in which tryptophan-62 or tryptophan-108 or both are nonfluorescent. The lifetimes range from about 0.5 ns to 2.8 ns for the various emitting tryptophans. The tryptophan lifetimes appear to increase with exposure of tryptophan to solvent, but intramolecular contacts, probably with cystine residues, can considerably shorten the lifetime. Intertryptophanyl interactions can also affect fluorescence lifetimes. The trytophan-108 lifetime in lysozyme is shorter than in the derivative in which tryptophan-62 is oxidized; this is ascribed to energy transfer from tryptophan-108 to tryptophan-62. From the lifetime results the relative intensities emitted by specific tryptophans can be estimated, and these values also support the existence of intertryptophanyl energy transfer. The emission intensity from tryptophan-62 is greater in the presence of tryptophan-108, and the emission intensity of tryptophan-108 appears to be greater in the absence of tryptophan-62. Conformational effects accompanying chemical modification of tryptophan cannot be completely ruled out, however. The tryptophan-62 lifetime at pH 8 in lysozyme is shorter than in the derivatives, which might indicate a subtle conformational effect. Studies with tri-(N-acetyl-glucosamine)-protein complexes indicate that both the tryptophan lifetimes and the number of emitting tryptophans may be changing upon complexation. The results illustrate the usefulness and the limitations of lifetime measurements in understanding protein fluorescence.  相似文献   

17.
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated previously and a B-CK cDNA probe, the cloning and characterization of which is reported here. The B-CK cDNA hybridizes specifically to a 1.6-kb mRNA found in brain and gizzard but not in adult skeletal muscle tissue. The M-CK cDNA hybridizes to a smaller mRNA 1.4-kb long which is specific to skeletal muscle. In culture, the B-CK mRNA is transiently induced and then declines to a low but detectable level.  相似文献   

18.
19.
This study demonstrates conclusively that tissues of the sponge Tethya aurantia contain significant creatine kinase (CK) activity. This CK was purified and analyzed with respect to a number of physico-chemical properties. Size exclusion chromatography and denaturing gel electrophoresis analyses showed that this enzyme is dimeric. The sequences of several Lys-C endoproteinase peptides from Tethya CK are consistent with this enzyme being a member of the phosphagen kinase family and a true CK. CK in higher organisms exists in a variety of quaternary structure forms--dimer, octamer and large monomer consisting of a three contiguous CK domains. The present results indicate that CK evolved very early in metazoan evolution and that the dimeric structure preceded other subunit association forms.  相似文献   

20.
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号