首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).  相似文献   

2.
3.
Fob1p protein has been implicated in the termination of replication forks at the two tandem termini present in the non-transcribed spacer region located between the sequences encoding the 35 S and the 5 S RNAs of Saccharomyces cerevisiae. However, the biochemistry and mode of action of this protein were previously unknown. We have purified the Fob1p protein to near-homogeneity, and we developed a novel technique to show that it binds specifically to the Ter1 and Ter2 sequences. Interestingly, the two sequences share no detectable homology. We present two lines of evidence showing that the interaction of the Fob1p with the Ter sites causes replication termination. First, a mutant of FOB1, L104S, that significantly reduced the binding of the mutant form of the protein to the tandem Ter sites, also failed to promote replication termination in vivo. The mutant did not diminish nucleolar transport, and interaction of the mutant form of Fob1p with itself and with another protein encoded in the locus YDR026C suggested that the mutation did not cause global misfolding of the protein. Second, DNA site mutations in the Ter sequences that separately and specifically abolished replication fork arrest at Ter1 or Ter2 also eliminated sequence-specific binding of the Fob1p to the two sites. The work presented here definitively established Ter DNA-Fob1p interaction as an important step in fork arrest.  相似文献   

4.
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III‐mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.  相似文献   

5.
To investigate the co-ordination between DNA replication and cell division, we have disrupted the DNA replication cycle of Escherichia coli by inserting inverted Ter sites into the terminus region to delay completion of the chromosome. The inverted Ter sites (designated Inv Ter :: spc r) were initially inserted into the chromosome of a Δ tus strain to allow unrestrained chromosomal replication. We then introduced a functional tus gene by transforming the Inv Ter :: spc r strain with a plasmid carrying the tus gene under control of an arabinose-inducible promoter. In the presence of 0.2% arabinose, the cells formed long filaments, suggesting that activation of the inverted Ter sites by Tus arrested DNA replication and delayed the onset of cell division. Induction of sfiA , a gene in the SOS regulon, was observed following arrest of DNA replication; however, when a sfiB114 allele was introduced into Inv Ter :: spc r strain, long filaments were still formed, suggesting that the sfi -independent pathway also caused filamentation. Either recA :: cam r or lexA3 alleles suppressed filamentation when introduced in the Inv Ter strain. Interestingly, in both the recA :: cam r and lexA3 mutants, virtually all cells had a nucleoid, suggesting that cell division was proceeding even though DNA replication was not complete. These results suggest that DNA replication and cell division are uncoupled when recA is inactivated or when genes repressed by LexA cannot be induced.  相似文献   

6.
Replication fork collapse at replication terminator sequences   总被引:5,自引:0,他引:5  
Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently.  相似文献   

7.
In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.  相似文献   

8.
Two so-called Ter sites, which bind the Escherichia coli Tus protein, are located near the replication origin of plasmid R1. Inactivation of the tus gene caused a large decrease in the stability of maintenance of the R1 mini-derivative pOU47 despite the presence of a functional partition system on the plasmid. Deletion of the right Ter site caused a drop in stability similar to that observed after inactivation of the tus gene. Substitution of 2 bp required for Tus binding also caused unstable plasmid maintenance, whereas no effects on stability were observed when the left Ter site was deleted. Inactivation of the tus gene was coupled to an increased occurrence of multimeric plasmid forms as shown by gel electrophoresis of pOU47 DNA. Inactivation of the recA gene did not increase plasmid stability, suggesting that the multimerization was not mediated by RecA. Plasmid DNA was isolated from the tus strain carrying plasmid pOU47 and from a wild-type strain carrying pOU47 in which the right Ter site had been inactivated; in both cases, electron microscopy revealed the presence of multimers as well as rolling-circle structures with double-stranded tails. Thus, the right Ter site in plasmid R1 appears to stabilize the plasmid by preventing multimerization and shifts from theta to rolling-circle replication.  相似文献   

9.
Arrest of DNA replication in the terminus region of the Escherichia coli chromosome is mediated by protein-DNA complexes composed of the Tus protein and 23 base pair sequences generically called Ter sites. We have characterized the in vitro binding of purified Tus protein to a 37-base pair oligodeoxyribonucleotide containing the TerB sequence. The measured equilibrium binding constant (KD) for the chromosomal TerB site in KG buffer (50 mM Tris-Cl, 150 mM potassium glutamate, 25 degrees C, pH 7.5, 0.1 mM dithiothreitol, 0.1 mM EDTA, and 100 micrograms/ml bovine serum albumin) was 3.4 x 10(-13) M. Kinetic measurements in the same buffer revealed that the Tus-TerB complex was very stable, with a half-life of 550 min, a dissociation rate constant of 2.1 x 10(-5) s-1, and an association rate constant of 1.4 x 10(8) M-1 s-1. Similar measurements of Tus protein binding to the TerR2 site of the plasmid R6K showed an affinity 30-fold lower than the Tus-TerB interaction. This difference was due primarily to a more rapid dissociation of the Tus-TerR2 complex. Using standard chemical modification techniques, we also examined the DNA-protein contacts of the Tus-TerB interaction. Extensive contacts between the Tus protein and the TerB sequence were observed in the highly conserved 11 base-pair "core" sequence common to all identified Ter sites. In addition, protein-DNA contact sites were observed in the region of the Ter site where DNA replication is arrested. Projection of the footprinting data onto B-form DNA indicated that the majority of the alkylation interference and hydroxyl radical-protected sites were arranged on one face of the DNA helix. We also observed dimethyl sulfate protection of 2 guanine residues on the opposite side of the helix, suggesting that part of the Tus protein extends around the double helix. The distribution of contacts along the TerB sequence was consistent with the functional polarity of the Tus-Ter complex and suggested possible mechanisms for the impediment of protein translocation along DNA.  相似文献   

10.
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.  相似文献   

11.
In the Escherichia coli chromosome, DNA replication forks arrested by a Tus-Ter complex or by DNA damage are reinitiated through pathways that involve RecA and numerous other recombination functions. To examine the role of recombination in the processing of replication forks arrested by a Tus-Ter complex, the requirements for recombination-associated gene products were assessed in cells carrying Ter plasmids, i.e., plasmids that contain a Ter site oriented to block DNA replication. Of the E. coli recombination functions tested, only loss of recA conferred an observable phenotype on cells containing a Ter plasmid, which was inefficient transformation and reduced ability to maintain a Ter plasmid when Tus was expressed. Given the current understanding of replication reinitiation, the simplest explanation for the restriction of Ter plasmid maintenance was a reduced ability to restart plasmid replication in a recA tus(+) background. However, we were unable to detect a difference in the efficiency of replication arrest by Tus in recA-proficient and recA-deficient cells, which suggests that the inability to restart arrested replication forks is not the cause of the restriction on growth, but is due to an additional function provided by RecA. Other explanations for restriction of Ter plasmid maintenance were examined, including plasmid multimerization, plasmid rearrangements, and copy number differences. The most likely cause of the restriction on Ter plasmid maintenance was a reduced copy number in recA cells that was detected when the copy number was measured in relation to an external control. Possibly, loss of RecA function leads to improper processing of replication forks arrested at a Ter site, leading to the generation of degradation-prone substrates.  相似文献   

12.
We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.  相似文献   

13.
Relatively little is known about the interaction of eukaryotic replication terminator proteins with the cognate termini and the replication termination mechanism. Here, we report a biochemical analysis of the interaction of the Reb1 terminator protein of Schizosaccharomyces pombe, which binds to the Ter3 site present in the nontranscribed spacers of ribosomal DNA, located in chromosome III. We show that Reb1 is a dimeric protein and that the N-terminal dimerization domain of the protein is dispensable for replication termination. Unlike its mammalian counterpart Ttf1, Reb1 did not need an accessory protein to bind to Ter3. The two myb/SANT domains and an adjacent, N-terminal 154-amino-acid-long segment (called the myb-associated domain) were both necessary and sufficient for optimal DNA binding in vitro and fork arrest in vivo. The protein and its binding site Ter3 were unable to arrest forks initiated in vivo from ars of Saccharomyces cerevisiae in the cell milieu of the latter despite the facts that the protein retained the proper affinity of binding, was located in vivo at the Ter site, and apparently was not displaced by the “sweepase” Rrm3. These observations suggest that replication fork arrest is not an intrinsic property of the Reb1-Ter3 complex.  相似文献   

14.
In Escherichia coli cells, there is a protein that specifically binds to DNA replication terminus (ter) sites on the host and plasmid genome and then blocks progress of the DNA replication fork. We reported that extract of the cells carrying the plasmid with the tau gene, which was identified to be an essential gene for the termination reaction at the ter site, contained about an 8-fold increase in ter-binding activity of the plasmid-free cells. With improvement of the promoter region of the tau gene on the plasmid by site-directed mutagenesis, the host cells produced the ter-binding protein (Ter protein) over 2,000-fold. Using these over-producing cells as the enzyme source, the Ter protein was purified to apparent homogeneity. Molecular mass 36,000, amino-terminal amino acid sequence (45 residues) and composition of the protein were in good agreement with those deduced from DNA sequence of the tau gene. Footprinting using the purified Ter protein revealed a specific binding to the ter sequences.  相似文献   

15.
In Escherichia coli, eight kinds of chromosome-derived DNA fragments (named Hot DNA) were found to exhibit homologous recombinational hotspot activity, with the following properties. (i) The Hot activities of all Hot DNAs were enhanced extensively under RNase H-defective (rnh) conditions. (ii) Seven Hot DNAs were clustered at the DNA replication terminus region on the E. coli chromosome and had Chi activities (H. Nishitani, M. Hidaka, and T. Horiuchi, Mol. Gen. Genet. 240:307-314, 1993). Hot activities of HotA, -B, and -C, the locations of which were close to three DNA replication terminus sites, the TerB, -A, and -C sites, respectively, disappeared when terminus-binding (Tau or Tus) protein was defective, thereby suggesting that their Hot activities are termination event dependent. Other Hot groups showed termination-independent Hot activities. In addition, at least HotA activity proved to be dependent on a Chi sequence, because mutational destruction of the Chi sequence on the HotA DNA fragment resulted in disappearance of the HotA activity. The HotA activity which had disappeared was reactivated by insertion of a new, properly oriented Chi sequence at the position between the HotA DNA and the TerB site. On the basis of these observations and positional and orientational relationships between the Chi and the Ter sequences, we propose a model in which the DNA replication fork blocked at the Ter site provides an entrance for the RecBCD enzyme into duplex DNA.  相似文献   

16.
Initiation of chromosome segregation in bacteria is achieved by proteins acting near the origin of replication. Here, we report that the precise choreography of the terminus region of the Escherichia coli chromosome is also tightly controlled. The segregation of the terminus (Ter) macrodomain (MD) involves the structuring factor MatP. We characterized that migration of the Ter MD from the new pole to mid-cell and its subsequent persistent localization at mid-cell relies on several processes. First, the replication of the Ter DNA is concomitant with its recruitment from the new pole to mid-cell in a sequential order correlated with the position on the genetic map. Second, using a strain carrying a linear chromosome with the Ter MD split in two parts, we show that replisomes are repositioned at mid-cell when replication of the Ter occurs. Third, we demonstrate that anchoring the Ter MD at mid-cell depends on the specific interaction of MatP with the division apparatus-associated protein ZapB. Our results reveal how segregation of the Ter MD is integrated in the cell-cycle control.  相似文献   

17.
18.
We have explored the Escherichia coli chromosome architecture by genetic dissection, using a site-specific recombination system that reveals the spatial proximity of distant DNA sites and records interactions. By analysing the percentages of recombination between pairs of sites scattered over the chromosome, we observed that DNA interactions were restricted to within subregions of the chromosome. The results indicated an organization into a ring composed of four macrodomains and two less-structured regions. Two of the macrodomains defined by recombination efficiency are similar to the Ter and Ori macrodomains observed by FISH. Two newly characterized macrodomains flank the Ter macrodomain and two less-structured regions flank the Ori macrodomain. Also the interactions between sister chromatids are rare, suggesting that chromosome segregation quickly follows replication. These results reveal structural features that may be important for chromosome dynamics during the cell cycle.  相似文献   

19.
Amplification of Hot DNA segments in Escherichia coli   总被引:1,自引:0,他引:1  
In Escherichia coli, a replication fork blocking event at a DNA replication terminus (Ter) enhances homologous recombination at the nearby sister chromosomal region, converting the region into a recombination hotspot, Hot, site. Using a RNaseH negative (rnhA-) mutant, we identified eight kinds of Hot DNAs (HotA-H). Among these, enhanced recombination of three kinds of Hot DNAs (HotA-C) was dependent on fork blocking events at Ter sites. In the present study, we examined whether HotA DNAs are amplified when circular DNA (HotA plus a drug-resistance DNA) is inserted into the homologous region on the chromosome of a rnhA- mutant. The resulting HotA DNA transformants were analysed using pulsed-field gel electrophoresis, fluorescence in situ hybridization and DNA microarray technique. The following results were obtained: (i) HotA DNA is amplified by about 40-fold on average; (ii) whereas 90% of the cells contain about 6-10 copies of HotA DNA, the remaining 10% of cells have as many as several hundred HotA copies; and (iii) amplification is detected in all other Hot DNAs, among which HotB and HotG DNAs are amplified to the same level as HotA. Furthermore, HotL DNA, which is activated by blocking the clockwise oriC-starting replication fork at the artificially inserted TerL site in the fork-blocked strain with a rnhA+ background, is also amplified, but is not amplified in the non-blocked strain. From these data, we propose a model that can explain production of three distinct forms of Hot DNA molecules by the following three recombination pathways: (i) unequal intersister recombination; (ii) intrasister recombination, followed by rolling-circle replication; and (iii) intrasister recombination, producing circular DNA molecules.  相似文献   

20.
We have delineated the amino acid to nucleotide contacts made by two interacting dimers of the replication terminator protein (RTP) of Bacillus subtilis with a novel naturally occurring bipolar replication terminus by converting RTP to a site-directed chemical nuclease and mapping its cleavage sites on the terminus. The data show a relatively symmetrical arrangement of the amino acid to base contacts, and a comparison of the bipolar contacts with that of a normal unipolar terminus suggests that the DNA-protein contacts play an important determinative role in generating polarity from structurally symmetrical RTP dimers. The amino acid to nucleotide contacts provided distance constraints that enabled us to build a three-dimensional model of the protein-DNA complex. The model is consistent with features of the bipolar Ter.RTP complex derived from mutational and cross-linking data. The bipolar terminus arrested Escherichia coli DNA replication and DnaB helicase and T7 RNA polymerase in vitro in both orientations. RTP arrested the unwinding of duplex DNA on the bipolar Ter DNA substrate regardless of the length of the duplex DNA. The latter result suggested further that the terminus arrested authentic DNA unwinding by the helicase rather than just translocation of helicase on DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号