首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1alpha and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1alpha stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1alpha activation. Activation of HIF-1alpha by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1alpha mutant construct inhibited epithelial wound repair, implicating HIF-1alpha in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1alpha. Finally, NO-mediated inhibition of cell migration was associated with HIF-1alpha-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1alpha and p53, with potential consequences for epithelial repair and remodeling during airway inflammation.  相似文献   

10.
In 1321N1 astrocytoma cells, thrombin, but not carbachol, induces AP-1-mediated gene expression and DNA synthesis. To understand the divergent effects of these G protein-coupled receptor agonists on cellular responses, we examined Gq-dependent signaling events induced by thrombin receptor and muscarinic acetylcholine receptor stimulation. Thrombin and carbachol induce comparable changes in phosphoinositide and phosphatidylcholine hydrolysis, mobilization of intracellular Ca2+, diglyceride generation, and redistribution of protein kinase C; thus, activation of these Gq-signaling pathways appears to be insufficient for gene expression and mitogenesis. Thrombin increases Ras and mitogen-activated protein kinase activation to a greater extent than carbachol in 1321N1 cells. The effects of thrombin are not mediated through Gi, since ribosylation of Gi/Go proteins by pertussis toxin does not prevent thrombin-induced gene expression or thrombin-stimulated DNA synthesis. We recently reported that the pertussis toxin-insensitive G12 protein is required for thrombin-induced DNA synthesis. We demonstrate here, using transfection of receptors and G proteins in COS-7 cells, that G alpha 12 selectively couples the thrombin receptor to AP-1-mediated gene expression. This does not appear to result from increased mitogen-activated protein kinase activity but may reflect activation of a tyrosine kinase pathway. We suggest that preferential coupling of the thrombin receptor to G12 accounts for the selective ability of thrombin to stimulate Ras, mitogen-activated protein kinase, gene expression, and mitogenesis in 1321N1 cells.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.  相似文献   

18.
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号